所属成套资源:2022届高三数学一轮复习检测(新高考)
第5章 第3节 平面向量的数量积及综合应用-2022届高三数学一轮复习讲义(新高考)教案
展开
这是一份第5章 第3节 平面向量的数量积及综合应用-2022届高三数学一轮复习讲义(新高考)教案,共14页。教案主要包含了教材概念·结论·性质重现,基本技能·思想·活动体验等内容,欢迎下载使用。
一、教材概念·结论·性质重现
1.向量的夹角
2.平面向量的数量积
(1)在分析两向量的夹角时,必须使两个向量的起点重合,如果起点不重合,可通过“平移”实现.
(2)两个向量夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量夹角可能是0或π的情况.两个向量a,b的夹角为锐角⇔a·b>0且a,b不共线;两个向量a,b的夹角为钝角⇔a·b<0且a,b不共线.
3.向量数量积的运算律
(1)a·b=b·a.
(2)(λa)·b=λ(a·b)=a·(λb).
(3)(a+b)·c=a·c+b·c.
(1)要准确理解数量积的运算律,例如,a·b=a·c(a≠0),不能得出b=c,两边不能约去同一个向量.
(2)平面向量数量积运算的常用公式.
①(a+b)·(a-b)=a2-b2.
②(a+b)2=a2+2a·b+b2.
③(a-b)2=a2-2a·b+b2.
4.平面向量数量积的性质
已知两个非空向量a=(x1,y1),b=(x2,y2),a,b的夹角为θ,则a·b=x1x2+y1y2.
二、基本技能·思想·活动体验
1.判断下列说法的正误,对的打“√”,错的打“×”.
(1)向量在另一个向量方向上的投影为数量,而不是向量.(√)
(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.(√)
(3)由a·b=0可得a=0或b=0.(×)
(4)(a·b)c=a(b·c).(×)
(5)两个向量的夹角的范围是eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(π,2))).(×)
2.若两个非零向量a,b满足|b|=2|a|=2,|a+2b|=3,则a,b的夹角是( )
A.eq \f(π,6) B.eq \f(π,3) C.eq \f(π,2) D.π
D 解析:因为|b|=2|a|=2,|a+2b|=3,
所以(a+2b)2=a2+4a·b+4b2=9,得a·b=-2.
所以cs θ=eq \f(a·b,|a||b|)=eq \f(-2,2×1)=-1.
因为θ∈[0,π],所以θ=π.
3.已知向量a=(2,1),b=(-1,k),a·(2a-b)=0,则k=________.
12 解析:因为2a-b=(4,2)-(-1,k)=(5,2-k),由a·(2a-b)=0,得(2,1)·(5,2-k)=0,
所以10+2-k=0,解得k=12.
4.已知点A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量eq \(AB,\s\up6(→))在eq \(CD,\s\up6(→))方向上的投影为________.
eq \f(3\r(2),2) 解析:eq \(AB,\s\up6(→))=(2,1),eq \(CD,\s\up6(→))=(5,5),
由定义知,eq \(AB,\s\up6(→))在eq \(CD,\s\up6(→))方向上的投影为eq \f(\(AB,\s\up6(→))·\(CD,\s\up6(→)),|\(CD,\s\up6(→))|)=eq \f(15,5\r(2))=eq \f(3\r(2),2).
考点1 平面向量数量积的运算——基础性
1.(2020·重庆模拟)已知向量a=(3,-1),b=(-1,2),则a在b上的投影为( )
A.-eq \r(5) B.eq \r(5) C.-eq \f(\r(10),2) D.eq \f(\r(10),2)
A 解析:由数量积定义可知,a在b方向上的投影为|a|cs〈a,b〉=eq \f(a·b,|b|)=eq \f(3×-1+-1×2,\r(5))=-eq \r(5).
2.(2020·乐山模拟)已知向量a与向量m=(4,6)平行,b=(-5,1),且a·b=14,则a=( )
A.(4,6)B.(-4,-6)
C.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2\r(13),13),\f(3\r(13),13)))D.eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(2\r(13),13),-\f(3\r(13),13)))
B 解析:因为向量a与向量m=(4,6)平行,可设a=eq \b\lc\(\rc\)(\a\vs4\al\c1(k,\f(3,2)k)).
由a·b=14可得-5k+eq \f(3,2)k=14,得k=-4,
所以a=(-4,-6).
3.(2020·三明模拟)已知正方形ABCD的边长为1,点M满足eq \(DM,\s\up6(→))=eq \f(1,2)eq \(MC,\s\up6(→)),设AM与BD交于点G,则eq \(AG,\s\up6(→))·eq \(AC,\s\up6(→))=( )
A.1 B.2 C.3 D.4
A 解析:以A为原点,AB和AD分别为x轴和y轴建立如图所示的平面直角坐标系,
则A(0,0),B(1,0),C(1,1),D(0,1).
因为eq \(DM,\s\up6(→))=eq \f(1,2)eq \(MC,\s\up6(→)),所以M为线段CD的靠近点D的三等分点,所以Meq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3),1)).
(方法一)显然△DGM∽△BGA,且相似比为1∶3.
eq \(AG,\s\up6(→))=eq \f(3,4)eq \(AM,\s\up6(→))=eq \f(3,4)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3),1))=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,4),\f(3,4))),
eq \(AC,\s\up6(→))=(1,1),eq \(AG,\s\up6(→))·eq \(AC,\s\up6(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,4),\f(3,4)))·(1,1)=1.
(方法二)直线BD的方程为y=-x+1,直线AM的方程为y=3x.
联立eq \b\lc\{\rc\ (\a\vs4\al\c1(y=-x+1,,y=3x,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(x=\f(1,4),,y=\f(3,4),))所以点Geq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,4),\f(3,4))).
所以eq \(AG,\s\up6(→))·eq \(AC,\s\up6(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,4),\f(3,4)))·(1,1)=eq \f(1,4)×1+eq \f(3,4)×1=1.
4.已知a=(x,1),b=(-2,4),若(a+b)⊥b,则x等于________.
12 解析:因为a=(x,1),b=(-2,4),所以a+b=(x-2,5).又(a+b)⊥b,所以(x-2)×(-2)+20=0,所以x=12.
平面向量数量积的三种运算方法
(1)当已知向量的模和夹角时,可利用定义法求解,即a·b=|a||b|cs〈a,b〉.
(2)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.
(3)对于数量积与线性运算的综合问题,可先运用数量积的运算律,几何意义等化简,再运算.
考点2 平面向量数量积的性质——应用性
(2020·汕头二模)已知非零向量a,b,若|a|=eq \r(2)|b|,且a⊥(a-2b),则a与b的夹角为( )
A.eq \f(π,6)B.eq \f(π,4)
C.eq \f(π,3)D.eq \f(3π,4)
B 解析:因为a⊥(a-2b),
所以a·(a-2b)=a2-2a·b=0,
所以a·b=eq \f(a2,2).又|a|=eq \r(2)|b|,
所以cs〈a,b〉=eq \f(a·b,|a||b|)=eq \f(\f(a2,2),\f(\r(2)a2,2))=eq \f(\r(2),2),
且0≤〈a,b〉≤π,
所以a与b的夹角为eq \f(π,4).
1.将本例条件改为“已知平面向量a,b满足|a+b|=|a|=|b|≠0”,求a与b的夹角.
解:由|a+b|=|a|=|b|≠0,
所以(a+b)2=a2=b2,
a2+2a·b+b2=a2=b2.
设a与b的夹角为θ,则|a|2+2|a||b|·cs θ+|b|2=|a|2,化简得1+2cs θ+1=1,
解得cs θ=-eq \f(1,2).
又θ∈[0,π],所以a与b的夹角θ=eq \f(2π,3).
2.本例若把条件改为“已知向量a与b的夹角为30°,且|a|=|2a-b|=1”,求|b|.
解:因为|2a-b|=1,
所以|2a-b|2=4a2-4a·b+b2=1,
所以4-4|b|cs 30°+b2=1,
整理得|b|2-2eq \r(3)|b|+3=(|b|-eq \r(3))2=0,
解得|b|=eq \r(3).
(2020·人大附中三模)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,Pi(i=1,2,…,8)是上底面上其余的八个点,则集合{y|y=eq \(AB,\s\up6(→))·eq \(APi,\s\up6(→)),i=1,2,3,…,8}中的元素个数( )
A.1 B.2 C.4 D.8
A 解析:由图可知,eq \(APi,\s\up6(→))=eq \(AB,\s\up6(→))+eq \(BPi,\s\up6(→)),所以eq \(AB,\s\up6(→))·eq \(APi,\s\up6(→))=eq \(AB,\s\up6(→))(eq \(AB,\s\up6(→))+eq \(BPi,\s\up6(→)))=eq \(AB,\s\up6(→))2+eq \(AB,\s\up6(→))·eq \(BPi,\s\up6(→)).
因为正方体的棱长为1,AB⊥BPi,所以eq \(AB,\s\up6(→))·eq \(BPi,\s\up6(→))=0,所以eq \(AB,\s\up6(→))·eq \(APi,\s\up6(→))=eq \(AB,\s\up6(→))2+eq \(AB,\s\up6(→))·eq \(BPi,\s\up6(→))=1+0=1.
故集合{y|y=eq \(AB,\s\up6(→))·eq \(APi,\s\up6(→)),i=1,2,…,8}中的元素个数为1.
1.求解平面向量模的方法
(1)利用公式|a|=eq \r(x2+y2).
(2)利用|a|=eq \r(a2).
2.求平面向量的夹角的方法
(1)定义法:cs θ=eq \f(a·b,|a||b|),θ的取值范围为[0,π].
(2)坐标法:若a=(x1,y1),b=(x2,y2),则cs θ=eq \f(x1x2+y1y2,\r(x\\al(2,1)+y\\al(2,1))·\r(x\\al(2,2)+y\\al(2,2))).
(3)解三角形法:把两向量的夹角放到三角形中.
3.两向量垂直的应用
两非零向量垂直的充要条件是:a⊥b⇔a·b=0⇔|a-b|=|a+b|.
已知非零向量a,b满足|a+b|=|a-b|=eq \f(2\r(3),3)|a|,求向量a+b与a-b的夹角.
解:将|a+b|=|a-b|两边平方,得a2+b2+2a·b=a2+b2-2a·b,所以a·b=0.
将|a+b|=eq \f(2\r(3),3)|a|两边平方,得a2+b2+2a·b=eq \f(4,3)a2,所以b2=eq \f(1,3)a2.
设a+b与a-b的夹角为θ,
所以cs θ=eq \f(a+b·a-b,|a+b||a-b|)=eq \f(a2-b2,\f(2\r(3),3)|a|·\f(2\r(3),3)|a|)=eq \f(\f(2,3)a2,\f(4,3)a2)=eq \f(1,2).
又因为θ∈[0,π],所以θ=eq \f(π,3).
考点3 平面向量数量积的应用——综合性
考向1 平面向量与三角函数
已知A,B,C的坐标分别是A(3,0),B(0,3),C(cs α,sin α).
(1)若|eq \(AC,\s\up6(→))|=|eq \(BC,\s\up6(→))|,求角α 的值;
(2)若eq \(AC,\s\up6(→))·eq \(BC,\s\up6(→))=-1,求eq \f(2sin2α+sin 2α,1+tan α)的值.
解:(1)因为A,B,C的坐标分别是A(3,0),B(0,3),C(cs α,sin α),
所以eq \(AC,\s\up6(→))=(cs α-3,sin α),eq \(BC,\s\up6(→))=(cs α,sin α-3).
所以|eq \(AC,\s\up6(→))|=eq \r(cs α-32+sin α2),
|eq \(BC,\s\up6(→))|=eq \r(cs α2+sin α-32).
因为|eq \(AC,\s\up6(→))|=|eq \(BC,\s\up6(→))|,所以eq \r(cs α-32+sin α2)=eq \r(cs α2+sin α-32),即(cs α-3)2+(sin α)2=(cs α)2+(sin α-3)2,
所以sin α=cs α,所以tan α=1,
所以α=kπ+eq \f(π,4),k∈Z.
(2)由(1)知,eq \(AC,\s\up6(→))=(cs α-3,sin α),eq \(BC,\s\up6(→))=(cs α,sin α-3),
所以eq \(AC,\s\up6(→))·eq \(BC,\s\up6(→))=(cs α-3)cs α+sin α·(sin α-3)=1-3(sin α+cs α)=-1.
所以sin α+cs α=eq \f(2,3),
所以(sin α+cs α)2=1+2sin αcs α=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2,3)))eq \s\up8(2),
所以2sin αcs α=-eq \f(5,9).
所以eq \f(2sin2α+sin 2α,1+tan α)=eq \f(2sin2α+2sin αcs α,1+\f(sin α,cs α))=2sin αcs α=-eq \f(5,9).
平面向量与三角函数的综合问题的解题思路
(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.
(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.
考向2 平面向量的最值问题
(2020·武汉模拟)已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为eq \f(π,3),向量b满足b2-4e·b+3=0,则|a-b|的最小值是( )
A.eq \r(3)-1B.eq \r(3)+1
C.2D.2-eq \r(3)
A 解析:设e=(1,0),b=(x,y),则b2-4e·b+3=0⇒x2+y2-4x+3=0⇒(x-2)2+y2=1.如图所示,a=eq \(OA,\s\up6(→)),b=eq \(OB,\s\up6(→))(其中A为射线OA上动点,B为圆C上动点,∠AOx=eq \f(π,3)).
所以|a-b|min=|CD|-1=eq \r(3)-1(其中CD⊥OA).
平面向量的最值一般有两种处理方法
(1)几何法:充分利用几何图形的特征,结合向量的线性运算和向量的数量积运算解决.
(2)代数法:将平面向量的最值转化为坐标运算,建立目标函数,利用代数方法解决.
1. (2020·西城区二模)设向量a,b满足|a|=|b|=1,a·b=eq \f(1,2),则|a+xb|(x∈R)的最小值为( )
A.eq \f(\r(5),2) B.eq \f(\r(3),2) C.1 D.eq \r(2)
B 解析:|a+xb|2=a2+2xa·b+x2b2=x2+x+1=eq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(1,2)))eq \s\up8(2)+eq \f(3,4),
所以当x=-eq \f(1,2)时,|a+xb|取得最小值eq \f(\r(3),2).
2.已知向量a=eq \b\lc\(\rc\)(\a\vs4\al\c1(cs \f(3x,2),sin \f(3x,2))),b=eq \b\lc\(\rc\)(\a\vs4\al\c1(cs \f(x,2),-sin \f(x,2))),且x∈eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(π,3),\f(π,4))).
(1)求a·b及|a+b|;
(2)若f (x)=a·b-|a+b|,求f (x)的最大值和最小值.
解:(1)a·b=cs eq \f(3x,2)cs eq \f(x,2)-sin eq \f(3x,2)·sin eq \f(x,2)=cs 2x.
因为a+b=eq \b\lc\(\rc\)(\a\vs4\al\c1(cs \f(3x,2)+cs \f(x,2),sin \f(3x,2)-sin \f(x,2))),
所以|a+b|=
eq \r(\b\lc\(\rc\)(\a\vs4\al\c1(cs \f(3x,2)+cs \f(x,2)))eq \s\up10(2)+\b\lc\(\rc\)(\a\vs4\al\c1(sin \f(3x,2)-sin \f(x,2)))eq \s\up10(2))
=eq \r(2+2cs 2x)=2|cs x|.
因为x∈eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(π,3),\f(π,4))),
所以cs x>0,所以|a+b|=2cs x.
(2)f (x)=cs 2x-2cs x=2cs2x-2cs x-1
=2eq \b\lc\(\rc\)(\a\vs4\al\c1(cs x-\f(1,2)))eq \s\up10(2)-eq \f(3,2).
因为x∈eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(π,3),\f(π,4))),所以eq \f(1,2)≤cs x≤1,
所以当cs x=eq \f(1,2)时,f (x)取得最小值-eq \f(3,2);
当cs x=1时,f (x)取得最大值-1.
(2019·天津高考)在四边形ABCD中,AD∥BC,AB=2eq \r(3),AD=5,∠BAD=30°,点E在线段CB的延长线上,且AE=BE,则eq \(BD,\s\up6(→))·eq \(AE,\s\up6(→))=________.
[四字程度]
思路参考:探究△AEB中的边角大小.
-1 解析:如图,因为AD∥BC,且∠DAB=30°,
所以∠ABE=30°.
又因为AE=BE,所以∠EAB=30°.
所以∠E=120°.
所以在△AEB中,AE=BE=2.
所以eq \(BD,\s\up6(→))·eq \(AE,\s\up6(→))=(eq \(BA,\s\up6(→))+eq \(AD,\s\up6(→)))·(eq \(AB,\s\up6(→))+eq \(BE,\s\up6(→)))
=-eq \(BA,\s\up6(→))2+eq \(BA,\s\up6(→))·eq \(BE,\s\up6(→))+eq \(AD,\s\up6(→))·eq \(AB,\s\up6(→))+eq \(AD,\s\up6(→))·eq \(BE,\s\up6(→))
=-12+2eq \r(3)×2×cs 30°+5×2eq \r(3)×cs 30°+5×2×cs 180°
=-12+6+15-10=-1.
思路参考:用eq \(AB,\s\up6(→)),eq \(AD,\s\up6(→))作基向量表示eq \(BD,\s\up6(→))·eq \(AE,\s\up6(→)).
-1 解析:如图,
因为AE=BE,AD∥BC,∠BAD=30°,
所以在等腰三角形ABE中,∠BEA=120°.
又AB=2eq \r(3),所以AE=BE=2,
所以eq \(BE,\s\up6(→))=-eq \f(2,5)eq \(AD,\s\up6(→)).
因为eq \(AE,\s\up6(→))=eq \(AB,\s\up6(→))+eq \(BE,\s\up6(→)),所以eq \(AE,\s\up6(→))=eq \(AB,\s\up6(→))-eq \f(2,5)eq \(AD,\s\up6(→)).
又eq \(BD,\s\up6(→))=eq \(BA,\s\up6(→))+eq \(AD,\s\up6(→))=-eq \(AB,\s\up6(→))+eq \(AD,\s\up6(→)),
所以eq \(BD,\s\up6(→))·eq \(AE,\s\up6(→))=(-eq \(AB,\s\up6(→))+eq \(AD,\s\up6(→)))·eq \b\lc\(\rc\)(\a\vs4\al\c1(\(AB,\s\up6(→))-\f(2,5)\(AD,\s\up6(→))))
=-eq \(AB,\s\up6(→))2+eq \f(7,5)eq \(AB,\s\up6(→))·eq \(AD,\s\up6(→))-eq \f(2,5)eq \(AD,\s\up6(→))2
=-eq \(AB,\s\up6(→))2+eq \f(7,5)|eq \(AB,\s\up6(→))|·|eq \(AD,\s\up6(→))|cs 30°-eq \f(2,5)eq \(AD,\s\up6(→))2
=-12+eq \f(7,5)×2eq \r(3)×5×eq \f(\r(3),2)-eq \f(2,5)×25=-1.
思路参考:构造菱形AEBF.
-1 解析:如图,过点B作AE的平行线交AD于点F.
因为AD∥BC,所以四边形AEBF为平行四边形,
因为AE=BE,故四边形AEBF为菱形.
因为∠BAD=30°,AB=2eq \r(3),
所以AF=2,即eq \(AF,\s\up6(→))=eq \f(2,5)eq \(AD,\s\up6(→)).
因为eq \(AE,\s\up6(→))=eq \(FB,\s\up6(→))=eq \(AB,\s\up6(→))-eq \(AF,\s\up6(→))=eq \(AB,\s\up6(→))-eq \f(2,5)eq \(AD,\s\up6(→)),
所以eq \(BD,\s\up6(→))·eq \(AE,\s\up6(→))=(eq \(AD,\s\up6(→))-eq \(AB,\s\up6(→)))·eq \b\lc\(\rc\)(\a\vs4\al\c1(\(AB,\s\up6(→))-\f(2,5)\(AD,\s\up6(→))))
=eq \f(7,5)eq \(AB,\s\up6(→))·eq \(AD,\s\up6(→))-eq \(AB,\s\up6(→))2-eq \f(2,5)eq \(AD,\s\up6(→))2
=eq \f(7,5)×2eq \r(3)×5×eq \f(\r(3),2)-12-10=-1.
思路参考:利用坐标法求AE,BE所在直线的方程.
-1 解析:建立如图所示的平面直角坐标系,则B(2eq \r(3),0),Deq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5\r(3),2),\f(5,2))).
因为AD∥BC,∠BAD=30°,所以∠ABE=30°.因为AE=BE,所以∠BAE=30°,所以直线BE的斜率为eq \f(\r(3),3),其方程为y=eq \f(\r(3),3)(x-2eq \r(3)),直线AE的斜率为-eq \f(\r(3),3),其方程为y=-eq \f(\r(3),3)x.
由eq \b\lc\{\rc\ (\a\vs4\al\c1(y=\f(\r(3),3)x-2\r(3),,y=-\f(\r(3),3)x,))得x=eq \r(3),y=-1,
所以E(eq \r(3),-1).
所以eq \(BD,\s\up6(→))·eq \(AE,\s\up6(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(3),2),\f(5,2)))·(eq \r(3),-1)=-1.
思路参考:利用坐标法确定点A,B,D,E的坐标.
-1 解析:过点B作BF垂直于ADF.
因为AB=2eq \r(3),∠A=30°,
则BF=eq \r(3),AF=3.
又因为AD∥BC,AE=BE,
则∠EBA=∠BAD=∠EAB=30°,则BE=2.
以F为原点,FD,FB为坐标轴建立如图所示的平面直角坐标系,
则A(-3,0),B(0,eq \r(3)),D(2,0),E(-2,eq \r(3)).
所以eq \(BD,\s\up6(→))=(2,-eq \r(3)),eq \(AE,\s\up6(→))=(1,eq \r(3)),
则eq \(BD,\s\up6(→))·eq \(AE,\s\up6(→))=2-3=-1.
1.本题考查平面向量数量积的计算问题,解法灵活多变,基本解题策略是借助于数量积计算的两个公式,利用基向量法或者坐标法求解.
2.基于课程标准,解答本题一般需要学生熟练掌握读图能力、运算求解能力、推理能力和表达能力,体现了直观想象、逻辑推理、数学运算的核心素养.
3.本题以几何图形的处理为切入点,求向量的数量积,可以从不同的角度解答题目,体现了基础性;同时,解题的过程需要知识之间的转化,体现了综合性.
已知向量a,b的夹角为60°,|a|=2,|b|=1,则|a+2b|=________.
2 解析:(方法一)|a+2b|=eq \r(a+2b2)
=eq \r(a2+4a·b+4b2)
=eq \r(22+4×2×1×cs 60°+4×12)=eq \r(12)=2eq \r(3).
(方法二:数形结合法)由|a|=|2b|=2,知以a与2b为邻边可作出边长为2的菱形OACB,如图所示,则|a+2b|=|eq \(OC,\s\up6(→))|.
又∠AOB=60°, 所以|a+2b|=2eq \r(3).定义
图示
范围
共线与垂直
已知两个非零向量a,b,O是平面上的任意一点,作eq \(OA,\s\up6(→))=a,eq \(OB,\s\up6(→))=b,则∠AOB叫做向量a与b的夹角
设θ为a与b的夹角,则θ的取值范围是0≤θ≤π
θ=0或θ=π⇔a∥b,θ=eq \f(π,2)⇔a⊥b
定义
已知两个非零向量a与b,它们的夹角为θ,我们把数量|a||b|cs θ叫做向量a与b的数量积(或内积),记作a·b
投影
|a|cs θ叫做向量a在b方向上的投影,
|b|cs θ叫做向量b在a方向上的投影
几何
意义
数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cs θ的乘积
性质
几何表示
坐标表示
模
|a|=eq \r(a·a)
|a|=eq \r(x\\al(2,1)+y\\al(2,1))
夹角
cs θ=eq \f(a·b,|a||b|)
cs θ=eq \f(x1x2+y1y2,\r(x\\al(2,1)+y\\al(2,1))\r(x\\al(2,2)+y\\al(2,2)))
a⊥b的充要条件
a·b=0
x1x2+y1y2=0
|a·b|与|a||b|的关系
|a·b|≤|a||b|
|x1x2+y1y2|≤
eq \r(x\\al(2,1)+y\\al(2,1)x\\al(2,2)+y\\al(2,2))
读
想
算
思
求eq \(BD,\s\up6(→))·eq \(AE,\s\up6(→))
1.数量积的计算方法;
2.用哪个公式好?
用恰当的基底或坐标表示两向量
转化与化归
四边形ABCD中,AD∥BC,AB=2eq \r(3),AD=5,∠A=30°,点E在线段CB的延长线上,AE=BE
1.基向量法1;
2.基向量法2;
3.基向量法3;
4.坐标法1;
5.坐标法2
1.几何法计算线段与夹角;
2.用基底或坐标表示eq \(BD,\s\up6(→))与eq \(AE,\s\up6(→));
3.计算数量积
1.向量的线性运算法则;
2.数量积计算公式
相关教案
这是一份第6章 第4节 数列求和-2022届高三数学一轮复习讲义(新高考)教案,共11页。教案主要包含了教材概念·结论·性质重现,基本技能·思想·活动体验等内容,欢迎下载使用。
这是一份第6章 第2节 等差数列-2022届高三数学一轮复习讲义(新高考)教案,共14页。教案主要包含了教材概念·结论·性质重现,基本技能·思想·活动体验等内容,欢迎下载使用。
这是一份第1章 第1节 集合-2022届高三数学一轮复习讲义(新高考)教案,共11页。教案主要包含了教材概念·结论·性质重现,基本技能·思想·活动体验等内容,欢迎下载使用。