终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021年高考理科数学一轮复习:专题8.7 高考解答题热点题型-立体几何 题型全归纳与高效训练突破

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      专题8.7 高考解答题热点题型-立体几何(老师版).docx
    • 练习
      专题8.7 高考解答题热点题型-立体几何(学生版).docx
    专题8.7 高考解答题热点题型-立体几何(老师版)第1页
    专题8.7 高考解答题热点题型-立体几何(老师版)第2页
    专题8.7 高考解答题热点题型-立体几何(老师版)第3页
    专题8.7 高考解答题热点题型-立体几何(学生版)第1页
    专题8.7 高考解答题热点题型-立体几何(学生版)第2页
    专题8.7 高考解答题热点题型-立体几何(学生版)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021年高考理科数学一轮复习:专题8.7 高考解答题热点题型-立体几何 题型全归纳与高效训练突破

    展开

    这是一份2021年高考理科数学一轮复习:专题8.7 高考解答题热点题型-立体几何 题型全归纳与高效训练突破,文件包含专题87高考解答题热点题型-立体几何学生版docx、专题87高考解答题热点题型-立体几何老师版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
    目录
    TOC \ "1-3" \h \u \l "_Tc26000" 一、题型综述 PAGEREF _Tc26000 1
    \l "_Tc9433" 二 题型全归纳 PAGEREF _Tc9433 1
    \l "_Tc25042" 题型一 空间点、线、面的位置关系及空. PAGEREF _Tc25042 1
    \l "_Tc11952" 题型二 平面图形的折叠问题 PAGEREF _Tc11952 7
    \l "_Tc9828" 题型三 立体几何中的探索性问题 PAGEREF _Tc9828 10
    \l "_Tc5554" 三、高效训练突破 PAGEREF _Tc5554 15
    一、题型综述
    立体几何是每年高考的重要内容,基本上都是一道客观题和一道解答题,客观题主要考查考生的空间想象能力及简单的计算能力.解答题主要采用证明与计算相结合的模式,即首先利用定义、定理、公理等证明空间线线、线面、面面的平行或垂直关系,再利用空间向量进行空间角的计算求解.重在考查考生的逻辑推理及计算能力,试题难度一般不大,属中档题,且主要有以下几种常见的热点题型.
    二 题型全归纳
    题型一 空间点、线、面的位置关系及空.
    1证明点共面或线共面的常用方法
    (1)直接法:证明直线平行或相交,从而证明线共面.
    (2)纳入平面法:先确定一个平面,再证明有关点、线在此平面内..
    (3)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.
    2.证明空间点共线问题的方法
    (1)公理法:一般转化为证明这些点是某两个平面的公共点,再根据公理3证明这些点都在这两个平面的交线上(2)纳入直线法:选择其中两点确定一条直线,然后证明其余点也在该直线上.
    3.证明线共点问题的常用方法
    先证其中两条直线交于一点,再证其他直线经过该点.
    4.求异面直线所成角的方法
    (1)几何法
    ①作:利用定义转化为平面角,对于异面直线所成的角,可固定一条,平移一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.
    ②证:证明作出的角为所求角.
    ③求:把这个平面角置于一个三角形中,通过解三角形求空间角.
    (2)向量法
    建立空间直角坐标系,利用公式|csθ|=eq \f(|m·n|,|m||n|)求出异面直线的方向向量的夹角.若向量夹角是锐角或直角,则该角即为异面直线所成角;若向量夹角是钝角,则异面直线所成的角为该角的补角.
    【例1】如图,AE⊥平面ABCD,CF∥AE,AD∥BC,AD⊥AB,AB=AD=1,AE=BC=2.
    (1)求证:BF∥平面ADE;
    (2)求直线CE与平面BDE所成角的正弦值;
    (3)若二面角E-BD-F的余弦值为eq \f(1,3),求线段CF的长.
    【例2】.如图,在三棱锥P­ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.
    (1)求证:MN∥平面BDE;
    (2)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为eq \f(\r(7),21),求线段AH的长.
    【例3】如图,在几何体ACD-A1B1C1D1中,四边形ADD1A1与四边形CDD1C1均为矩形,平面ADD1A1⊥平面CDD1C1,B1A1⊥平面ADD1A1,AD=CD=1,AA1=A1B1=2,E为棱AA1的中点.
    (1)证明:B1C1⊥平面CC1E;
    (2)求直线B1C1与平面B1CE所成角的正弦值.
    题型二 平面图形的折叠问题
    【解法】解决平面图形翻折问题的关键是抓住“折痕”,准确把握平面图形翻折前后的两个“不变”.
    (1)与折痕垂直的线段,翻折前后垂直关系不改变;
    (2)与折痕平行的线段,翻折前后平行关系不改变.
    【例1】如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.
    (1)证明:平面PEF⊥平面ABFD;
    (2)求DP与平面ABFD所成角的正弦值.
    题型三 立体几何中的探索性问题
    【技巧要点】对命题条件的探索的三种途径
    途径一:先猜后证,即先观察与尝试给出条件再证明.
    途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.
    途径三:将几何问题转化为代数问题
    【例1】(2020·湖北“四地七校”联考)在四棱锥P-ABCD中,底面ABCD是边长为2eq \r(2)的正方形,平面PAC⊥底面ABCD,PA=PC=2eq \r(2).
    (1)求证:PB=PD;
    (2)若点M,N分别是棱PA,PC的中点,平面DMN与棱PB的交点为点Q,则在线段BC上是否存在一点H,使得DQ⊥PH?若存在,求BH的长;若不存在,请说明理由.
    【例2】如图,在四棱锥P­ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.
    (1)求证:BD⊥平面PAC;
    (2)若∠ABC=60°,求证:平面PAB⊥平面PAE;
    (3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.
    【例3】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.
    (1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;
    (2)求图2中的二面角B-CG-A的大小.
    三、高效训练突破
    1.(2020·深圳模拟)已知四棱锥P­ABCD,底面ABCD为菱形,PD=PB,H为PC上的点,过AH的平面分别交PB,PD于点M,N,且BD∥平面AMHN.
    (1)证明:MN⊥PC;
    (2)当H为PC的中点,PA=PC=eq \r(3)AB,PA与平面ABCD所成的角为60°,求AD与平面AMHN所成角的正弦值.
    2.(2020·河南联考)如图所示,在四棱锥P-ABCD中,底面ABCD为平行四边形,平面PAD⊥平面ABCD,△PAD是边长为4的等边三角形,BC⊥PB,E是AD的中点.
    (1)求证:BE⊥PD;
    (2)若直线AB与平面PAD所成角的正弦值为eq \f(\r(15),4),求平面PAD与平面PBC所成的锐二面角的余弦值.
    3.(2020·云南师范大学附属中学3月月考)如图,在直三棱柱ABC­A1B1C1中,△ABC是边长为2的正三角形,AA1=2eq \r(6),D是CC1的中点,E是A1B1的中点.
    (1)证明:DE∥平面A1BC;
    (2)求点A到平面A1BC的距离.
    4.(2020·湖北十堰4月调研)如图,在三棱锥P-ABC中,M为AC的中点,PA⊥PC,AB⊥BC,AB=BC,PB=eq \r(2),AC=2,∠PAC=30°.
    (1)证明:BM⊥平面PAC;
    (2)求二面角B-PA-C的余弦值.
    5.(2020·合肥模拟)如图,在多面体ABCDEF中,四边形ABCD是正方形,BF⊥平面ABCD,DE⊥平面ABCD,BF=DE,M为棱AE的中点.
    (1)求证:平面BDM∥平面EFC;
    (2)若DE=2AB,求直线AE与平面BDM所成角的正弦值.
    6.(2020·河南郑州三测)如图①,△ABC中,AB=BC=2,∠ABC=90°,E,F分别为边AB,AC的中点,以EF为折痕把△AEF折起,使点A到达点P的位置(如图②),且PB=BE.
    (1)证明:EF⊥平面PBE;
    (2)设N为线段PF上的动点(包含端点),求直线BN与平面PCF所成角的正弦值的最大值.
    7.(2020·山东淄博三模)如图①,已知正方形ABCD的边长为4,E,F分别为AD,BC的中点,将正方形ABCD沿EF折成如图②所示的二面角,且二面角的大小为60°,点M在线段AB上(包含端点),连接AD.
    (1)若M为AB的中点,直线MF与平面ADE的交点为O,试确定点O的位置,并证明直线OD∥平面EMC;
    (2)是否存在点M,使得直线DE与平面EMC所成的角为60°?若存在,求此时二面角M­EC­F的余弦值;若不存在,说明理由.

    相关试卷

    2021年高考理科数学一轮复习:专题9.10 高考解答题热点题型(二)定点、定值、探索性问题 题型全归纳与高效训练突破:

    这是一份2021年高考理科数学一轮复习:专题9.10 高考解答题热点题型(二)定点、定值、探索性问题 题型全归纳与高效训练突破,文件包含专题910高考解答题热点题型二定点定值探索性问题学生版docx、专题910高考解答题热点题型二定点定值探索性问题老师版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。

    2021年高考理科数学一轮复习:专题9.9 高考解答题热点题型(一)圆锥曲线中的范围、最值问题 题型全归纳与高效训练突破:

    这是一份2021年高考理科数学一轮复习:专题9.9 高考解答题热点题型(一)圆锥曲线中的范围、最值问题 题型全归纳与高效训练突破,文件包含专题99高考解答题热点题型一圆锥曲线中的范围最值问题学生版docx、专题99高考解答题热点题型一圆锥曲线中的范围最值问题老师版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。

    2021年高考理科数学一轮复习:专题8.6 立体几何中的向量方法 题型全归纳与高效训练突破:

    这是一份2021年高考理科数学一轮复习:专题8.6 立体几何中的向量方法 题型全归纳与高效训练突破,文件包含专题86立体几何中的向量方法学生版docx、专题86立体几何中的向量方法老师版pdf等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map