![6.2.1 点、线、面的位置关系教案-湘教版数学必修301](http://m.enxinlong.com/img-preview/3/3/12061376/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![6.2.1 点、线、面的位置关系教案-湘教版数学必修302](http://m.enxinlong.com/img-preview/3/3/12061376/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
必修36.2空间的直线与平面教案设计
展开教材版本: 新课标:人教版A版《数学必修2》
设计思想:
空间中直线与直线的位置关系是学生在已经学习了平面的基本概念的基础上进行学习的。在立体几何初步的内容中,位置关系主要包括直线与直线的位置关系、直线与平面的位置关系、平面与平面的位置关系。而空间中直线与直线的位置关系是以上各种位置关系中最重要、最基本的一种,是我们研究的重点。
教材在编写时注意从平面到空间的变化,通过观察实物,直观感知,抽象概括出定义及定理培养学生的观察能力和分析问题的能力,通过联系和比较,理解定义、定理,以利于正确的进行运用。
教材分析:
直线与直线问题是高考考查的重点之一,求解的关键是根据线与面之间的互化关系,借助创设辅助线与面,找出符号语言与图形语言之间的关系把问题解决。通过对有关概念和定理的概括、证明和应用,使学生体会“转化”的观点,提高学生的空间想象力和逻辑推理能力。
教学目标:
1、知识与技能
(1).掌握异面直线的定义,会用异面直线的定义判断两直线的位置关系。
(2).会用平面衬托来画异面直线。
(3).掌握并会应用平行公理。
2、过程与方法
(1)自主合作探究、师生的共同讨论与讲授法相结合;
(2)让学生在学习过程不断探究归纳整理所学知识。
3、情感态度与价值观
(1).让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣。
(2).增强动态意识,培养学生观察、对比、分析的思维,通过平移转化渗透数学中的化归及辩证唯物主义思想。
(3).通过探究增强学生的合作意识、动脑意识和动手能力。
教学重点:异面直线的定义。
教学难点:异面直线所成角的推证与求解。
教具准备:学生学案一份、多媒体、合作探究配套教学模型(正方体)
教学模式
问题——自主、合作——探究
教学过程:
一、复习引入
1.师:平面内两条直线的位置关系有?
生:相交直线、平行直线
相交直线(有一个公共点);平行直线(无公共点)
2.师:平面内不平行的两直线必相交,问:空间内还成立否?
通过实例展示。十字路口----立交桥
立交桥中, 两条路线AB, CD既不平行,又不相交(非平面问题)
六角螺母
A
B
C
D
二、新课讲解
1.异面直线的定义:
不同在任何一个平面内的两条直线叫做异面直线。
练习:在教室里找出几对异面直线的例子
(学生就教室中的灯管、黑板、墙棱、暖气管、课桌等等找出许多异面直线)
2.异面直线的画法
说明: 画异面直线时 , 为了体现它们不共面的特点。常借助一个或两个平面来衬托.
合作探究:分别在两个平面内的两条直线是否一定异面?
答:不一定:它们可能异面,可能相交,也可能平行。
(学生自告奋勇的在黑板上画出上述三种情况,即巩固异面直线的定义,又训练了异面直线的画法)
3.空间两直线的位置关系
按平面基本性质分 (1)同在一个平面内:相交直线、平行直线
(2)不同在任何一个平面内:异面直线
H
C
B
E
D
G
A
按公共点个数分 (1)有一个公共点: 相交直线
(2)无公共点:平行直线、异面直线
注1:两直线异面的判别一 : 两条直线 既不相交、又不平行.
两直线异面的判别二 : 两条直线不同在任何一个平面内.
合作探究:如图是一个正方体的展开图,如果将它
还原为正方体, 那么 AB , CD , EF , GH 这四条线段
所在直线是异面直线的有 对?
(学生以小组为单位,对照课前准备好的正方体模型,进行合作讨论,找出异面直线。
老师通过几何画板展示此图还原的过程,与学生一起订正他们的答案)
答:共有三对
3.异面直线所成的角
(1)复习回顾
A
B
G
F
H
E
D
C
在平面内,两条直线相交成四个角, 其中不大于90度的角称为它们的夹角, 用以刻画两直线的错开程度, 如图.
O
(2)问题提出
在空间,如图所示, 正方体ABCD-EFGH中, 异面直线AB与HF的错开程度可以怎样来刻画
(3)问题猜想
思想方法 : 平移转化成相交直线所成的角,即化空间图形问题为平面图形问题
思考 : 这个角的大小与O点的位置有关吗 ? 即O点位置不同时, 这一角的大小
是否改变? 答 : 这个角的大小与O点的位置无关.
(4)理论支持
㈠:我们知道,在同一平面内, 如果两条直线都和第三条直线平行,
那么这两条直线互相平行.在空间这一规律是否还成立呢?
观察 : 将一张纸如图进行折叠 , 则各折痕及边 a, b, c, d, e, … 之间有何关系?
a
b
c
e
d
a∥b ∥c ∥d ∥e ∥ …
公理4:在空间平行于同一条直线的两条直线互相平行.——平行线的传递性
推广:在空间平行于一条已知直线的所有直线都互相平行.
4.例题选讲
G
F
H
E
B
C
D
A
1.下图长方体中
(1)说出以下各对线段的位置关系?
①EC和BH是 相交 直线
②BD和FH是 平行 直线
③BH和DC是 异面 直线
(2)与棱 A B 所在直线异面的棱共有 4 条?
课后思考:长方体的棱中共有多少对异面直线?
2.如图,已知空间四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,试判断四边形EFGH是什么四边形,并证明你的结论。(用课件给出例2)
证明:连结BD
∵E、H分别是AB、AD的中点
∴EH是△ABD的中位线
∴EH∥BD,且EH=BD
同理,FG∥BD,且FG=BD
∴EH∥FG,且EH=FG
∴四边形EFGH是平行四边形
6.课堂小结
异面直线的定义: 不同在 任何 一个平面内的两条直线叫做异面直线。
空间两直线的位置关系:相交直线、平行直线、异面直线
异面直线的画法:用平面来衬托
公理4(平行公理):在空间平行于同一条直线的两条直线互相平行.
7、课后作业:
(1)(必做):复查并修改《课前预习》,补充完善听课案
(2)(分层达标):ⅰ:双基自诊 ⅱ:巩固提高
思考:E
A
B
F
D
C
“ 若直线 a 与直线 b 异面,直线 b 与直线 c 异面。 则a与c 也异面”。这一命题对吗?为什么? ( 即:异面直线是否具有传递性)
答:不一定。
注:异面直线不具有传递性
如图,正四面体 A-BCD 中 , E、F 分别是边 AD、
BC的中点,求异面直线 EF与AC 所成的角?
思考:在此题中,连接AC ,若有AC=BD,则四边形EFGH是什么图形?
《高考数学二轮满分突破讲义》专题四 第2讲 空间点、线、面的位置关系: 这是一份《高考数学二轮满分突破讲义》专题四 第2讲 空间点、线、面的位置关系,共13页。
高中数学2.3.3直线与圆的位置关系教学设计: 这是一份高中数学2.3.3直线与圆的位置关系教学设计,共3页。教案主要包含了教学目标,教学重点,教学设想等内容,欢迎下载使用。
高中数学湘教版必修37.3圆与方程教案设计: 这是一份高中数学湘教版必修37.3圆与方程教案设计,共4页。教案主要包含了学情分析,教学目标,教学重难点,课时安排,教学过程,第一课时,第二课时,教学反思等内容,欢迎下载使用。