终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年人教版数学中考专题复习之二次函数压轴题课件PPT

    立即下载
    加入资料篮
    2021-2022学年人教版数学中考专题复习之二次函数压轴题课件PPT第1页
    2021-2022学年人教版数学中考专题复习之二次函数压轴题课件PPT第2页
    2021-2022学年人教版数学中考专题复习之二次函数压轴题课件PPT第3页
    2021-2022学年人教版数学中考专题复习之二次函数压轴题课件PPT第4页
    2021-2022学年人教版数学中考专题复习之二次函数压轴题课件PPT第5页
    2021-2022学年人教版数学中考专题复习之二次函数压轴题课件PPT第6页
    2021-2022学年人教版数学中考专题复习之二次函数压轴题课件PPT第7页
    2021-2022学年人教版数学中考专题复习之二次函数压轴题课件PPT第8页
    还剩41页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年人教版数学中考专题复习之二次函数压轴题课件PPT

    展开

    这是一份2021-2022学年人教版数学中考专题复习之二次函数压轴题课件PPT,共49页。PPT课件主要包含了自主解答略等内容,欢迎下载使用。
    1.主要类型:(1)线段及周长最值问题(2)面积最值问题(3)存在性问题探究
    2.规律方法:(1)解决线段和的最小值或三角形周长最小问题,主要依据是“两点之间,线段最短”,具体方法是利用轴对称将两条线段之和转化为一条线段的长,然后求出该条线段的长.
    (2)解决图形面积的最值问题,通常先设出动点坐标,然后表示出图形面积,利用二次函数性质来求最大值或最小值,表示不规则图形的面积时,通常采用割补法把其转化为易于表示面积的图形(有一边在坐标轴上或平行于坐标轴).
    (3)解决存在性问题要先假设结论成立,然后根据所探究特殊图形的有关性质,利用分类讨论的数学思想构造全等或相似图形,进而求出字母的取值.3.渗透的思想:分类讨论、转化思想、数形结合、函数与方程等.
    类型一 线段及周长最值问题【考点解读】1.考查范畴:线段和周长最值问题主要包括线段和的最小值、周长和的最小值和线段差的最大值三种情况.
    2.考查角度:利用二次函数解析式确定有关点的坐标,结合某个动点考查两条线段和或差的最值问题.
    【典例探究】典例1(2018·宜宾节选)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y= x与抛物线交于A,B两点,直线l为y=-1.
    (1)求抛物线的解析式.(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.
    【思路点拨】(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式.
    (2)联立直线AB与抛物线解析式组成方程组,通过解方程组可求出点A,B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A,B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.
    【规律方法】解决线段和最小值问题的方法(1)解题的基本依据是“两点之间,线段最短”,如图所示,若A,B是两个定点,动点P在直线m上,求PA+PB的最小值的方法是:作点A关于直线m的对称点A′,当A′,P,B三点共线时PA+PB最小.
    (2)确定动点P的位置后,再根据两条直线的解析式联立组成方程组,进而求出交点P的坐标.
    【题组过关】1.(2019·烟台中考)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(-1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y= (x>0)经过点D,连接MD,BD.
    (1)求抛物线的解析式.(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标.(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)
    2.(2019·贺州中考)如图,在平面直角坐标系中,已知点B的坐标为(-1,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.
    (1)求A,C两点的坐标.(2)求抛物线的解析式.(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.
    【解析】(1)OA=OC=4OB=4,故点A,C的坐标分别为(4,0),(0,-4).(2)抛物线的解析式为:y=a(x+1)(x-4)=a(x2-3x-4),即-4a=-4,解得:a=1,故抛物线的解析式为:y=x2-3x-4.
    (3)直线CA过点C,设其函数解析式为:y=kx-4,将点A坐标代入上式并解得:k=1,故直线CA的解析式为:y=x-4,过点P作y轴的平行线交AC于点H,
    ∵OA=OC=4,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHD=∠OCA=45°,设点P(x,x2-3x-4),则点H(x,x-4),
    PD=HPsin∠PHD= (x-4-x2+3x+4)= x2+ x,∵

    相关课件

    2021-2022学年人教版数学中考专题复习之二次函数中的存在性问题 (2)课件PPT:

    这是一份2021-2022学年人教版数学中考专题复习之二次函数中的存在性问题 (2)课件PPT,共16页。PPT课件主要包含了自主解答略等内容,欢迎下载使用。

    2021-2022学年人教版数学中考专题复习之二次函数中的存在性问题课件PPT:

    这是一份2021-2022学年人教版数学中考专题复习之二次函数中的存在性问题课件PPT,共30页。

    2021-2022学年人教版数学中考专题复习之二次函数的应用课件PPT:

    这是一份2021-2022学年人教版数学中考专题复习之二次函数的应用课件PPT,共57页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map