第四章 4.4y=Asin(ωx+φ)-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】
展开第1课时
进门测
1、判断下列结论是否正确(请在括号中打“√”或“×”)
(1)y=sin的图象是由y=sin的图象向右平移个单位得到的.( √ )
(2)将函数y=sin ωx的图象向右平移φ(φ>0)个单位长度,得到函数y=sin(ωx-φ)的图象.( × )
(3)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( × )
(4)函数y=Asin(ωx+φ)的最小正周期为T=.( × )
(5)把y=sin x的图象上各点纵坐标不变,横坐标缩短为原来的,所得图象对应的函数解析式为y=sin x.( × )
(6)若函数y=Acos(ωx+φ)的最小正周期为T,则函数图象的两个相邻对称中心之间的距离为.( √ )
2、y=2sin(x-)的振幅,频率和初相分别为( )
A.2,4π, B.2,,
C.2,,- D.2,4π,-
答案 C
解析 由题意知A=2,f===,初相为-.
3、将函数y=sin x的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )
A.y=sin(2x-) B.y=sin(2x-)
C.y=sin(x-) D.y=sin(x-)
答案 C
解析 y=sin x=y=sin(x-)y=sin(x-).
4、函数f(x)=2sin(ωx+φ)(ω>0,|φ|<)的图象如图所示,则ω=________,φ=________.
答案 2
解析 根据图象知T=π,∴ω=2,
又f(x)图象过点(0,1),且点(0,1)位于函数图象的递增部分,
∴由2sin φ=1得φ=+2kπ(k∈Z),
又∵|φ|<,∴φ=.
5、若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是________.
答案
解析 ∵函数f(x)=sin(2x+)的图象向右平移φ个单位得到g(x)=sin[2(x-φ)+]=sin(2x+-2φ),
又∵g(x)是偶函数,∴-2φ=kπ+(k∈Z),
∴φ=--(k∈Z).
当k=-1时,φ取得最小正值.
作业检查
无
第2课时
阶段训练
题型一 函数y=Asin(ωx+φ)的图象及变换
例1 某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ
0
π
2π
x
Asin(ωx+φ)
0
5
-5
0
(1) 请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2) 将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为,求θ的最小值.
解 (1)根据表中已知数据,解得A=5,ω=2,φ=-.数据补全如下表:
ωx+φ
0
π
2π
x
π
Asin(ωx+φ)
0
5
0
-5
0
且函数解析式为f(x)=5sin.
(2)由(1)知f(x)=5sin,
得g(x)=5sin.
因为函数y=sin x图象的对称中心为(kπ,0),k∈Z.
令2x+2θ-=kπ,解得x=+-θ,k∈Z.
由于函数y=g(x)的图象关于点成中心对称,
所以令+-θ=,解得θ=-,k∈Z.
由θ>0可知,当k=1时,θ取得最小值.
引申探究
在本例(2)中,将f(x)图象上所有点向左平移个单位长度,得到g(x)的图象,求g(x)的解析式,并写出g(x)图象的对称中心.
解 由(1)知f(x)=5sin(2x-),
因此g(x)=5sin[2(x+)-]
=5sin(2x+).
因为y=sin x的对称中心为(kπ,0),k∈Z.
令2x+=kπ,k∈Z,解得x=-,k∈Z.
即y=g(x)图象的对称中心为(-,0),k∈Z.
思维升华 (1)五点法作简图:用“五点法”作y=Asin(ωx+φ)的简图,主要是通过变量代换,设z=ωx+φ,由z取0,,π,π,2π来求出相应的x,通过列表,计算得出五点坐标,描点后得出图象.
(2)图象变换:由函数y=sin x的图象通过变换得到y=Asin(ωx+φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.
【同步练习】
1、将函数y=sin 2x的图象向右平移φ个单位长度后所得图象的解析式为y=sin(2x-),则φ=________(0<φ<),再将函数y=sin(2x-)图象上各点的横坐标伸长到原来的2倍(纵坐标不变)后得到的图象的解析式为________.
答案 y=sin(x-)
解析 将y=sin 2x中的x替换为x-后得到
y=sin(2x-),
故向右平移个单位长度;
将y=sin(2x-)图象上各点横坐标伸长到原来的2倍,则将x替换为得到y=sin(x-).
题型二 由图象确定y=Asin(ωx+φ)的解析式
例2 已知函数f(x)=Asin(ωx+φ) (A>0,|φ|<,ω>0)的图象的一部分如图所示.
(1)求f(x)的表达式;
(2)试写出f(x)的对称轴方程.
解 (1)观察图象可知A=2且点(0,1)在图象上,
∴1=2sin(ω·0+φ),即sin φ=.
∵|φ|<,∴φ=,
又∵是函数的一个零点且是图象递增穿过x轴形成的零点,
∴ω+=2π,∴ω=2.
∴f(x)=2sin(2x+).
(2)设2x+=B,则函数y=2sin B的对称轴方程为B=+kπ,k∈Z,
即2x+=+kπ(k∈Z),
解得x=+ (k∈Z),
∴f(x)=2sin(2x+)的对称轴方程为
x=+(k∈Z).
【同步练习】
1、已知函数f(x)=sin(ωx+φ) (ω>0,|φ|<)的部分图象如图所示,则y=f(x+)取得最小值时x的集合为( )
A.{x|x=kπ-,k∈Z}
B.{x|x=kπ-,k∈Z}
C.{x|x=2kπ-,k∈Z}
D.{x|x=2kπ-,k∈Z}
答案 B
解析 根据所给图象,周期T=4×(-)=π,故π=,∴ω=2,因此f(x)=sin(2x+φ),另外图象经过点(,0),代入有2×+φ=kπ(k∈Z),再由|φ|<,得φ=-,∴f(x+)=sin(2x+),当2x+=-+2kπ (k∈Z),即x=-+kπ(k∈Z)时,y=f(x+)取得最小值.
第3课时
阶段重难点梳理
1.y=Asin(ωx+φ)的有关概念
y=Asin(ωx+φ)(A>0,ω>0),x∈R
振幅
周期
频率
相位
初相
A
T=
f==
ωx+φ
φ
2.用五点法画y=Asin(ωx+φ)一个周期内的简图时,要找五个特征点
如下表所示:
x
ωx+φ
0
π
2π
y=Asin(ωx+φ)
0
A
0
-A
0
3.函数y=sin x的图象经变换得到y=Asin(ωx+φ) (A>0,ω>0)的图象的步骤如下:
【知识拓展】
1.由y=sin ωx到y=sin(ωx+φ)(ω>0,φ>0)的变换:向左平移个单位长度而非φ个单位长度.
2.函数y=Asin(ωx+φ)的对称轴由ωx+φ=kπ+,k∈Z确定;对称中心由ωx+φ=kπ,k∈Z确定其横坐标.
重点题型训练
题型三 三角函数图象性质的应用
命题点1 三角函数模型的应用
例3 如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin+k,据此函数可知,这段时间水深(单位:m)的最大值为( )
A.5 B.6
C.8 D.10
答案 C
解析 由题干图易得ymin=k-3=2,则k=5.
∴ymax=k+3=8.
命题点2 函数零点(方程根)问题
例4 已知关于x的方程2sin2x-sin 2x+m-1=0在上有两个不同的实数根,则m的取值范围是________.
答案 (-2,-1)
解析 方程2sin2x-sin 2x+m-1=0可转化为
m=1-2sin2x+sin 2x
=cos 2x+sin 2x
=2sin,x∈.
设2x+=t,则t∈,
∴题目条件可转化为=sin t,t∈有两个不同的实数根.
∴y=和y=sin t,t∈的图象有两个不同交点,如图:
由图象观察知,的范围为(-1,-),
故m的取值范围是(-2,-1).
引申探究
例4中,若将“有两个不同的实数根”改成“有实根”,则m的取值范围是__________.
答案 [-2,1)
解析 由例4知,的范围是,
∴-2≤m<1,
∴m的取值范围是[-2,1).
命题点3 图象与性质的综合应用
例5 已知函数f(x)=sin(ωx+φ) (ω>0,-≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.
(1)求ω和φ的值;
(2)当x∈[0,]时,求函数y=f(x)的最大值和最小值.
解 (1)因为f(x)的图象上相邻两个最高点的距离为π,所以f(x)的最小正周期T=π,从而ω==2.
又因为f(x)的图象关于直线x=对称,
所以2·+φ=kπ+,k∈Z,
由-≤φ<,得k=0,
所以φ=-=-.
综上,ω=2,φ=-.
(2)由(1)知f(x)=sin(2x-),
当x∈[0,]时,-≤2x-≤,
∴当2x-=,即x=时,f(x)最大值=;
当2x-=-,即x=0时,f(x)最小值=-.
【同步练习】
1、已知函数f(x)=cos(3x+),其中x∈[,m],若f(x)的值域是[-1,-],则m的取值范围是__________.
答案 [,]
解析 画出函数的图象.
由x∈[,m],可知≤3x+≤3m+,
因为f()=cos =-且f()=cos π=-1,要使f(x)的值域是[-1,-],只要≤m≤,即m∈[,].
题型五 三角函数图象与性质的综合问题
例6 已知函数f(x)=2sin(+)·cos(+)-sin(x+π).
(1)求f(x)的最小正周期;
(2)若将f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.
思维点拨 (1)先将f(x)化成y=Asin(ωx+φ)的形式再求周期;
(2)将f(x)解析式中的x换成x-,得g(x),然后利用整体思想求最值.
规范解答
解 (1)f(x)=2sin(+)·cos(+)-sin(x+π)=cos x+sin x[
=2sin(x+),
于是T==2π.[6分]
(2)由已知得g(x)=f(x-)=2sin(x+),[8分]
∵x∈[0,π],∴x+∈[,],
∴sin(x+)∈[-,1],[10分]
∴g(x)=2sin(x+)∈[-1,2].[12分]
故函数g(x)在区间[0,π]上的最大值为2,最小值为-1.
思导总结
一、求y=Asin(ωx+φ)+B(A>0,ω>0)解析式的步骤
(1)求A,B,确定函数的最大值M和最小值m,则A=,B=.
(2)求ω,确定函数的周期T,则ω=.
(3)求φ,常用方法如下:
①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.
②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(即图象上升时与x轴的交点)为ωx+φ=0;“第二点”(即图象的“峰点”)为ωx+φ=;“第三点”(即图象下降时与x轴的交点)为ωx+φ=π;“第四点”(即图象的“谷点”)为ωx+φ=;“第五点”为ωx+φ=2π.
二、解决三角函数图象与性质的综合问题的一般步骤
第一步:(化简)将f(x)化为asin x+bcos x的形式;
第二步:(用辅助角公式)构造f(x)=·(sin x·+cos x·);
第三步:(求性质)利用f(x)=sin(x+φ)研究三角函数的性质;
第四步:(反思)反思回顾,查看关键点、易错点和答题规范.
作业布置
1.函数y=cos的部分图象可能是( )
答案 D
解析 ∵y=cos,∴当2x-=0,
即x=时,函数取得最大值1,结合图象看,可使函数在x=时取得最大值的只有D.
2.已知函数f(x)=cos(ωx+)(ω>0)的最小正周期为π,为了得到函数g(x)=cos ωx的图象,只要将y=f(x)的图象( )
A.向左平移个单位长度
B.向右平移个单位长度
C.向左平移个单位长度
D.向右平移个单位长度
答案 D
解析 由f(x)的周期为π得ω=2,f(x)=cos(2x+)向右平移个单位长度后得到g(x)=cos 2x的图象.
3.已知函数f(x)=sin ωx+cos ωx(ω>0),x∈R.在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为,则f(x)的最小正周期为( )
A. B. C.π D.2π
答案 C
解析 f(x)=sin ωx+cos ωx=2sin(ωx+)(ω>0).
由2sin(ωx+)=1,得sin(ωx+)=,
∴ωx+=2kπ+或ωx+=2kπ+π(k∈Z).
令k=0,得ωx1+=,ωx2+=π,
∴x1=0,x2=.
由|x1-x2|=,得=,∴ω=2.
故f(x)的最小正周期T==π.
4.函数f(x)=sin(ωx+φ) (x∈R,ω>0,|φ|<)的部分图象如图所示,如果x1,x2∈(-,)且f(x1)=f(x2),则f(x1+x2)等于( )
A. B.
C. D.1
答案 B
解析 观察图象可知,A=1,T=π,
∴ω=2,f(x)=sin(2x+φ).
将(-,0)代入上式得sin(-+φ)=0,
由|φ|<,得φ=,则f(x)=sin(2x+).
函数图象的对称轴为x==.
又x1,x2∈(-,),
且f(x1)=f(x2),∴=,
∴x1+x2=,
∴f(x1+x2)=sin(2×+)=.故选B.
5.函数f(x)=sin(2x+φ)的图象向左平移个单位后所得函数图象的解析式是奇函数,则函数f(x)在上的最小值为( )
A.- B.-
C. D.
答案 A
解析 由函数f(x)的图象向左平移个单位得g(x)=sin的图象,
因为是奇函数,所以φ+=kπ,k∈Z,
又因为|φ|<,所以φ=-,
所以f(x)=sin.
又x∈,所以2x-∈,
所以当x=0时,f(x)取得最小值为-.
6.已知函数f(x)=sin(ωx+φ)的最小正周期是π,若将f(x)的图象向右平移个单位后得到的图象关于原点对称,则函数f(x)的图象( )
A.关于直线x=对称 B.关于直线x=对称
C.关于点对称 D.关于点对称
答案 B
解析 由题意知=π,∴ω=2;
又由f(x)的图象向右平移个单位后得到y=sin[2+φ]=sin,此时关于原点对称,
∴-+φ=kπ,k∈Z,
∴φ=+kπ,k∈Z,
又|φ|<,
∴φ=-,
∴f(x)=sin.
当x=时,
2x-=-,
∴A、C错误;
当x=时,
2x-=,
∴B正确,D错误.
7.函数y=sin x-cos x的图象可由函数y=sin x+cos x的图象至少向右平移________个单位长度得到.
答案
解析 y=sin x-cos x=2sin,y=sin x+cos x=2sin,因此至少向右平移个单位长度得到.
8.设偶函数f(x)=Asin(ωx+φ) (A>0,ω>0,0<φ<π)的部分图象如图所示,△KLM为等腰直角三角形,∠KML=90°,KL=1,则f()的值为________.
答案
解析 由题意知,点M到x轴的距离是,根据题意可设f(x)=cos ωx,
又由题图知·=1,所以ω=π,
所以f(x)=cos πx,
故f()=cos =.
9.已知函数f(x)=sin ωx+cos ωx(ω>0),x∈R.若函数f(x)在区间(-ω,ω)内单调递增,且函数y=f(x)的图象关于直线x=ω对称,则ω的值为________.
答案
解析 f(x)=sin ωx+cos ωx=sin,
因为f(x)在区间(-ω,ω)内单调递增,且函数图象关于直线x=ω对称,所以f(ω)必为一个周期上的最大值,所以有ω·ω+=2kπ+,k∈Z,所以ω2=+2kπ,k∈Z.又ω-(-ω)≤,即ω2≤,即ω2=,所以ω=.
10.先把函数f(x)=sin(x-)的图象上各点的横坐标变为原来的(纵坐标不变),再把新得到的图象向右平移个单位,得到y=g(x)的图象.当x∈(,)时,函数g(x)的值域为________.
答案 (-,1]
解析 依题意得
g(x)=sin[2(x-)-]
=sin(2x-),
当x∈(,)时,2x-∈(-,),
此时sin(2x-)∈(-,1],
故g(x)的值域是(-,1].
11.已知函数y=Asin(ωx+φ) (A>0,ω>0)的图象过点P(,0),图象上与点P最近的一个最高点是Q(,5).
(1)求函数的解析式;
(2)求函数f(x)的递增区间.
解 (1)依题意得A=5,周期T=4(-)=π,
∴ω==2.
故y=5sin(2x+φ),又图象过点P(,0),
∴5sin(+φ)=0,
由已知可得+φ=0,∴φ=-,
∴y=5sin(2x-).
(2)由-+2kπ≤2x-≤+2kπ,k∈Z,
得-+kπ≤x≤+kπ,k∈Z,
故函数f(x)的递增区间为
[kπ-,kπ+] (k∈Z).
12.已知函数f(x)=cos2x+sin x·cos x-.
(1)求函数f(x)的最小正周期T和函数f(x)的单调递增区间;
(2)若函数f(x)的对称中心为(x,0),求x∈[0,2π)的所有x的和.
解 (1)由题意得f(x)=sin(2x+),∴T==π,
令-+2kπ≤2x+≤+2kπ,k∈Z.
可得函数f(x)的单调递增区间为[-+kπ,+kπ],k∈Z.
(2)令2x+=kπ,k∈Z,可得x=-+,k∈Z.
∵x∈[0,2π),∴k可取1,2,3,4.
∴所有满足条件的x的和为+++=.
*13. 函数f(x)=Asin(ωx+φ) (A>0,ω>0,0<φ<)的部分图象如图所示.
(1)求f(x)的解析式;
(2)设g(x)=[f(x-)]2,求函数g(x)在x∈[-,]上的最大值,并确定此时x的值.
解 (1)由题图知A=2,=,
则=4×,∴ω=.
又f(-)=2sin[×(-)+φ]
=2sin(-+φ)=0,
∴sin(φ-)=0,
∵0<φ<,∴-<φ-<,
∴φ-=0,即φ=,
∴f(x)的解析式为f(x)=2sin(x+).
(2)由(1)可得
f(x-)=2sin[(x-)+]
=2sin(x+),
∴g(x)=[f(x-)]2=4×
=2-2cos(3x+),
∵x∈[-,],∴-≤3x+≤,
∴当3x+=π,即x=时,g(x)max=4.
第九章 9.5椭圆-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】: 这是一份第九章 9.5椭圆-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】,文件包含第九章95椭圆-学生版docx、第九章95椭圆-教师版docx等2份学案配套教学资源,其中学案共40页, 欢迎下载使用。
第五章 5.5复数-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】: 这是一份第五章 5.5复数-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】,文件包含第五章55复数-学生版docx、第五章55复数-教师版docx等2份学案配套教学资源,其中学案共27页, 欢迎下载使用。
第二章 2.7函数图像-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】: 这是一份第二章 2.7函数图像-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】,文件包含第二章27函数图像-学生版docx、第二章27函数图像-教师版docx等2份学案配套教学资源,其中学案共38页, 欢迎下载使用。