搜索
    上传资料 赚现金
    第五章 5.1平面向量概念-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 第五章 5.1平面向量概念-教师版.docx
    • 第五章 5.1平面向量概念-学生版.docx
    第五章 5.1平面向量概念-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】01
    第五章 5.1平面向量概念-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】02
    第五章 5.1平面向量概念-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】03
    第五章 5.1平面向量概念-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】01
    第五章 5.1平面向量概念-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】02
    第五章 5.1平面向量概念-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】03
    还剩16页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第五章 5.1平面向量概念-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】

    展开
    这是一份第五章 5.1平面向量概念-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】,文件包含第五章51平面向量概念-学生版docx、第五章51平面向量概念-教师版docx等2份学案配套教学资源,其中学案共29页, 欢迎下载使用。

    第1课时


    进门测



    判断下列结论是否正确(请在括号中打“√”或“×”)
    (1)向量与有向线段是一样的,因此可以用有向线段来表示向量.( × )
    (2)|a|与|b|是否相等与a,b的方向无关.( √ )
    (3)若a∥b,b∥c,则a∥c.( × )
    (4)若向量与向量是共线向量,则A,B,C,D四点在一条直线上.( × )
    (5)当两个非零向量a,b共线时,一定有b=λa,反之成立.( √ )

    作业检查




    第2课时


    阶段训练



    题型一 平面向量的概念
    例1 给出下列四个命题:
    ①若|a|=|b|,则a=b;
    ②若A,B,C,D是不共线的四点,则=是四边形ABCD为平行四边形的充要条件;
    ③若a=b,b=c,则a=c;
    ④a=b的充要条件是|a|=|b|且a∥b.
    其中正确命题的序号是(  )
    A.②③ B.①②
    C.③④ D.②④
    答案 A
    解析 ①不正确.两个向量的长度相等,但它们的方向不一定相同.
    ②正确.∵=,∴||=||且∥,
    又A,B,C,D是不共线的四点,
    ∴四边形ABCD为平行四边形;
    反之,若四边形ABCD为平行四边形,
    则∥且||=||,∴=.
    ③正确.∵a=b,∴a,b的长度相等且方向相同,
    又b=c,∴b,c的长度相等且方向相同,
    ∴a,c的长度相等且方向相同,故a=c.
    ④不正确.当a∥b且方向相反时,即使|a|=|b|,也不能得到a=b,故|a|=|b|且a∥b不是a=b的充要条件,而是必要不充分条件.
    综上所述,正确命题的序号是②③.故选A.
    思维升华 向量有关概念的关键点
    (1)向量定义的关键是方向和长度.
    (2)非零共线向量的关键是方向相同或相反,长度没有限制.
    (3)相等向量的关键是方向相同且长度相等.
    (4)单位向量的关键是方向没有限制,但长度都是一个单位长度.
    (5)零向量的关键是方向没有限制,长度是0,规定零向量与任何向量共线.
     设a0为单位向量,①若a为平面内的某个向量,则a=|a|a0;②若a与a0平行,则a=|a|a0;③若a与a0平行且|a|=1,则a=a0.上述命题中,假命题的个数是(  )
    A.0 B.1
    C.2 D.3
    答案 D
    解析 向量是既有大小又有方向的量,a与|a|a0的模相同,但方向不一定相同,故①是假命题;若a与a0平行,则a与a0的方向有两种情况:一是同向,二是反向,反向时a=-|a|a0,故②③也是假命题.综上所述,假命题的个数是3.
    题型二 平面向量的线性运算
    命题点1 向量的线性运算
    例2 (1)在平行四边形ABCD中,下列结论中错误的是(  )
    A.= B.+=
    C.-= D.+=
    (2)设D为△ABC所在平面内一点,若=3,则(  )
    A.=-+ B.=-
    C.=+ D.=-
    答案 (1)C (2)A
    解析 (1)=,+=,
    +=正确.
    而-=,故C错误.故选C.
    (2)∵=3,∴-=3(-),
    即4-=3,∴=-+.
    命题点2 根据向量线性运算求参数
    例3 (1)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC.若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为________.
    (2)在△ABC中,点D在线段BC的延长线上,且=3,点O在线段CD上(与点C,D不重合),若=x+(1-x),则x的取值范围是(  )
    A. B.
    C. D.
    答案 (1) (2)D
    解析 (1)=+=+
    =+(+)=-+,
    ∴λ1=-,λ2=,即λ1+λ2=.
    (2)设=y,
    ∵=+
    =+y=+y(-)
    =-y+(1+y).
    ∵=3,点O 在线段CD上(与点C,D不重合),
    ∴y∈,
    ∵=x+(1-x),
    ∴x=-y,∴x∈.
    思维升华 平面向量线性运算问题的常见类型及解题策略
    (1)向量加法或减法的几何意义.向量加法和减法均适合三角形法则.
    (2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.
    (3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较求参数的值.

     如图,一直线EF与平行四边形ABCD的两边AB,AD分别交于E,F两点,且交对角线AC于点K,其中,=,=,=λ,则λ的值为(  )
    A. B.
    C. D.
    答案 A
    解析 ∵=,=,
    ∴=,=2.
    由向量加法的平行四边形法则可知,
    =+,
    ∴=λ=λ(+)
    =λ
    =λ+2λ,
    由E,F,K三点共线,可得λ=,
    故选A.
    题型三 共线定理的应用
    例4 设两个非零向量a与b不共线.
    (1)若=a+b,=2a+8b,=3(a-b),
    求证:A,B,D三点共线;
    (2)试确定实数k,使ka+b和a+kb共线.
    (1)证明 ∵=a+b,=2a+8b,=3(a-b),
    ∴=+=2a+8b+3(a-b)
    =2a+8b+3a-3b=5(a+b)=5,
    ∴,共线.
    又∵它们有公共点B,∴A,B,D三点共线.
    (2)解 假设ka+b与a+kb共线,
    则存在实数λ,使ka+b=λ(a+kb),
    即(k-λ)a=(λk-1)b.
    又a,b是两个不共线的非零向量,
    ∴k-λ=λk-1=0.
    消去λ,得k2-1=0,∴k=±1.
    思维升华 (1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系.当两向量共线且有公共点时,才能得出三点共线.
    (2)向量a、b共线是指存在不全为零的实数λ1,λ2,使λ1a+λ2b=0成立,若λ1a+λ2b=0,当且仅当λ1=λ2=0时成立,则向量a、b不共线.
     (1)已知向量=a+3b,=5a+3b,=-3a+3b,则(  )
    A.A,B,C三点共线 B.A,B,D三点共线
    C.A,C,D三点共线 D.B,C,D三点共线
    (2)如图所示,设O是△ABC内部一点,且+=-2,则△ABC与△AOC的面积之比为________.

    答案 (1)B (2)2
    解析 (1)∵=+
    =2a+6b=2(a+3b)=2,
    ∴,共线,又有公共点B,
    ∴A,B,D三点共线.故选B.
    (2)取AC的中点D,连接OD,
    则+=2,
    ∴=-,
    ∴O是AC边上的中线BD的中点,
    ∴S△ABC=2S△OAC,
    ∴△ABC与△AOC面积之比为2.
    第3课时


    阶段重难点梳理




    1.向量的有关概念
    名称
    定义
    备注
    向量
    既有大小,又有方向的量;向量的大小叫做向量的长度(或称模)
    平面向量是自由向量
    零向量
    长度为0的向量;其方向是任意的
    记作0
    单位向量
    长度等于1个单位的向量
    非零向量a的单位向量为±
    平行向量
    方向相同或相反的非零向量
    0与任一向量平行或共线
    共线向量
    方向相同或相反的非零向量又叫做共线向量
    相等向量
    长度相等且方向相同的向量
    两向量只有相等或不等,不能比较大小
    相反向量
    长度相等且方向相反的向量
    0的相反向量为0

    2.向量的线性运算
    向量
    运算
    定义
    法则(或几何意义)
    运算律
    加法
    求两个向量和的运算

    (1)交换律:a+b=b+a;
    (2)结合律:(a+b)+c=a+(b+c)
    减法
    求a与b的相反向量-b的和的运算

    a-b=a+(-b)
    数乘
    求实数λ与向量a的积的运算
    (1)|λa|=|λ||a|;
    (2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0
    (1)λ(μa)=(λμ)a;
    (2)(λ+μ)a=λa+μa;
    (3)λ(a+b)=λa+λb

    3.共线向量定理
    向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使b=λa.
    【知识拓展】
    1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即+++…+=,特别地,一个封闭图形,首尾连接而成的向量和为零向量.
    2.若P为线段AB的中点,O为平面内任一点,则=(+).
    3.=λ+μ(λ,μ为实数),若点A,B,C共线,则λ+μ=1.

    重点题型训练




    典例 下列叙述错误的是________.
    ①若a∥b,b∥c,则a∥c.
    ②若非零向量a与b方向相同或相反,则a+b与a,b之一的方向相同.
    ③|a|+|b|=|a+b|⇔a与b方向相同.
    ④向量b与向量a共线的充要条件是有且只有一个实数λ,使得b=λa.
    ⑤+=0.
    ⑥若λa=λb,则a=b.
    错解展示
    解析 ⑤中两个向量的和仍是一个向量,∴+=0.
    答案 ⑤
    现场纠错
    解析 对于①,当b=0时,a不一定与c平行.
    对于②,当a+b=0时,其方向任意,它与a,b的方向都 不相同.
    对于③,当a,b之一为零向量时结论不成立.
    对于④,当a=0且b=0时,λ有无数个值;当a=0但b≠0或a≠0但b=0时,λ不存在.
    对于⑤,由于两个向量之和仍是一个向量,
    所以+=0.
    对于⑥,当λ=0时,不管a与b的大小与方向如何,都有λa=λb,此时不一定有a=b.
    故①②③④⑤⑥均错.
    答案 ①②③④⑤⑥
    纠错心得 在考虑向量共线问题时,要注意考虑零向量.

    1.给出下列命题:①零向量的长度为零,方向是任意的;②若a,b都是单位向量,则a=b;③向量与相等.则所有正确命题的序号是(  )
    A.① B.③
    C.①③ D.①②
    答案 A
    解析 根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量与互为相反向量,故③错误.
    2.(教材改编)D是△ABC的边AB上的中点,则向量等于(  )
    A.-+ B.--
    C.- D.+
    答案 A
    解析 如图,

    =+=+=-+.
    3.已知a,b是不共线的向量,=λa+b,=a+μb(λ,μ∈R),那么A,B,C三点共线的充要条件是(  )
    A.λ+μ=2 B.λ-μ=1
    C.λμ=-1 D.λμ=1
    答案 D
    解析 由=λa+b,=a+μb(λ,μ∈R)及A,B,C三点共线得=t,
    所以λa+b=t(a+μb)=ta+tμb,
    即可得所以λμ=1,故选D.
    4.在平行四边形ABCD中,对角线AC与BD交于点O,+=λ,则λ=________.
    答案 2
    解析 由向量加法的平行四边形法则,
    得+=.
    又O是AC的中点,∴AC=2AO,∴=2,∴+=2.又+=λ,
    ∴λ=2.



    作业布置



    1.设O是正方形ABCD的中心,则向量,,,是(  )
    A.相等的向量 B.平行的向量
    C.有相同起点的向量 D.模相等的向量
    答案 D
    解析 这四个向量的模相等.
    2.在四边形ABCD中,AB∥CD,AB=3DC,E为BC的中点,则等于(  )

    A.+ B.+
    C.+ D.+
    答案 A
    解析 因为=++=-+,
    所以=+=+=+
    =+.
    3.已知=a+2b,=-5a+6b,=7a-2b,则下列一定共线的三点是(  )
    A.A,B,C B.A,B,D
    C.B,C,D D.A,C,D
    答案 B
    解析 因为=++=3a+6b=3(a+2b)=3,又,有公共点A,所以A,B,D三点共线.
    4.已知平面内一点P及△ABC,若++=,则点P与△ABC的位置关系是(  )
    A.点P在线段AB上 B.点P在线段BC上
    C.点P在线段AC上 D.点P在△ABC外部
    答案 C
    解析 由++=得+=-=,即=-=2,所以点P在线段AC上.
    5. 如图所示,在△ABC中,点O是BC的中点,过点O的直线分别交直线AB,AC于不同的两点M,N,若=m,=n,则m+n的值为(  )

    A.1 B.2
    C.3 D.4
    答案 B
    解析 ∵O为BC的中点,
    ∴=(+)
    =(m+n)=+,
    ∵M,O,N三点共线,∴+=1,
    ∴m+n=2.
    6.设P为锐角△ABC的外心(三角形外接圆的圆心),=k(+)(k∈R),若cos∠BAC=,则k等于(  )
    A. B. C. D.
    答案 A
    解析 取BC的中点D,连接PD,AD,
    则PD⊥BC,+=2,
    ∵=k(+)(k∈R),
    ∴=2k,∴A,P,D三点共线,
    ∴AB=AC,
    ∴cos∠BAC=cos∠DPC===,
    ∴AP=AD,∴2k=,解得k=,故选A.
    7.如图,网格纸上小正方形的边长为1,若起点和终点均在格点的向量a,b,c满足c=xa+yb(x,y∈R),则x+y=________.

    答案 
    解析 如图,取单位向量i,j,则
    a=i+2j,b=2i-j,c=3i+4j.
    ∴c=xa+yb=x(i+2j)+y(2i-j)=(x+2y)i+(2x-y)j,
    ∴ ∴
    ∴x+y=.
    8.设a,b不共线,=2a+pb,=a+b,=a-2b,若A,B,D三点共线,则实数p的值是________.
    答案 -1
    解析 ∵=a+b,=a-2b,
    ∴=+=2a-b.
    又∵A,B,D三点共线,∴,共线.
    设=λ,
    ∴2a+pb=λ(2a-b),
    ∵a,b不共线,
    ∴2=2λ,p=-λ,∴λ=1,p=-1.
    *9.设G为△ABC的重心,且sin A·+sin B·+sin C·=0,则角B的大小为________.
    答案 60°
    解析 ∵G是△ABC的重心,∴++=0,=-(+),将其代入sin A·+sin B·+sin C·=0,得(sin B-sin A)+(sin C-sin A)=0.又,不共线,
    ∴sin B-sin A=0,sin C-sin A=0,
    则sin B=sin A=sin C.根据正弦定理知b=a=c,
    ∴△ABC是等边三角形,则角B=60°.
    *10.已知△ABC和点M满足++=0.若存在实数m,使得+=m成立,则m=________.
    答案 3
    解析 ∵++=0,
    ∴M为△ABC的重心.
    如图所示,连接AM并延长交BC于点D,则D为BC的中点.

    ∴=.
    又=(+),
    ∴=(+),
    即+=3,∴m=3.
    11.已知O为△ABC内一点,且满足+λ+(λ-1)=0,若△OAB的面积与△OAC的面积的比值为,则λ的值为________.
    答案 
    解析 因为+λ(+)-=0,所以=λ(+),设G为BC的中点,所以=2λ,所以点O在过点G且与AC平行的直线上,分别过点B,C作BF⊥OA,CE⊥OA,因为=,

    所以==,所以==3,
    所以2λ==3,得λ=.
    12. 在△ABC中,D,E分别为BC,AC边上的中点,G为BE上一点,且GB=2GE,设=a,=b,试用a,b表示,.

    解 =(+)=a+b.
    =+=+=+(+)
    =+(-)
    =+
    =a+b.
    *13. 如图,在平行四边形ABCD中,O是对角线AC,BD的交点,N是线段OD的中点,AN的延长线与CD交于点E,若=m+,求实数m的值.

    解 由N是OD的中点得=+
    =+(+)=+,
    又因为A,N,E三点共线,
    故=λ,
    即m+=λ(+),
    所以解得故实数m=.

    相关学案

    第六章 6.1数列的概念-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】: 这是一份第六章 6.1数列的概念-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】,文件包含第六章61数列的概念-学生版docx、第六章61数列的概念-教师版docx等2份学案配套教学资源,其中学案共29页, 欢迎下载使用。

    第五章 5.5复数-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】: 这是一份第五章 5.5复数-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】,文件包含第五章55复数-学生版docx、第五章55复数-教师版docx等2份学案配套教学资源,其中学案共27页, 欢迎下载使用。

    第五章 5.2平面向量基本定理及坐标表示-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】: 这是一份第五章 5.2平面向量基本定理及坐标表示-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】,文件包含第五章52平面向量基本定理及坐标表示-学生版docx、第五章52平面向量基本定理及坐标表示-教师版docx等2份学案配套教学资源,其中学案共28页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第五章 5.1平面向量概念-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map