第十二章 12.6圆锥曲线问题-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】
展开第1课时
进门测
1.已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( )
A. B.2 C. D.
答案 D
解析 如图,设双曲线E的方程为-=1(a>0,b>0),则|AB|=2a,由双曲线的对称性,可设点M(x1,y1)在第一象限内,过M作MN⊥x轴于点N(x1,0),
∵△ABM为等腰三角形,且∠ABM=120°,
∴|BM|=|AB|=2a,∠MBN=60°,
∴y1=|MN|=|BM|sin∠MBN=2asin 60°=a,
x1=|OB|+|BN|=a+2acos 60°=2a.将点M(x1,y1)的坐标代入-=1,可得a2=b2,∴e== =,选D.
2.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )
A. B. C. D.
答案 D
解析 由已知得焦点坐标为F(,0),
因此直线AB的方程为y=(x-),
即4x-4y-3=0.
方法一 联立直线方程与抛物线方程化简得4y2-12y-9=0,
故|yA-yB|==6.
因此S△OAB=|OF||yA-yB|=××6=.
方法二 联立方程得x2-x+=0,
故xA+xB=.
根据抛物线的定义有|AB|=xA+xB+p=+
=12,
同时原点到直线AB的距离为h==,
因此S△OAB=|AB|·h=.
3.已知A,B分别为椭圆+=1(a>b>0)的右顶点和上顶点,直线y=kx(k>0)与椭圆交于C,D两点,若四边形ACBD的面积的最大值为2c2,则椭圆的离心率为( )
A. B. C. D.
答案 D
解析 设C(x1,y1)(x1>0),D(x2,y2),
将y=kx代入椭圆方程可解得x1=,x2=,
则|CD|=|x1-x2|=.
又点A(a,0)到直线y=kx的距离d1=,点B(0,b)到直线y=kx的距离d2=,
所以S四边形ACBD=d1|CD|+d2|CD|
=(d1+d2)·|CD|=··
=ab·.
令t=,
则t2==1+2ab·
=1+2ab·≤1+2ab·=2,
当且仅当=a2k,即k=时,tmax=,
所以S四边形ACBD的最大值为ab.
由条件,有ab=2c2,
即2c4=a2b2=a2(a2-c2)=a4-a2c2,2c4+a2c2-a4=0,2e4+e2-1=0,
解得e2=或e2=-1(舍去),所以e=,故选D.
4.双曲线-=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点,若正方形OABC的边长为2,则a=________.
答案 2
解析 设B为双曲线的右焦点,如图所示.
∵四边形OABC为正方形且边长为2,
∴c=|OB|=2,
又∠AOB=,
∴=tan=1,即a=b.
又a2+b2=c2=8,∴a=2.
作业检查
无
第2课时
阶段训练
题型一 求圆锥曲线的标准方程
例1 已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点.若△AF1B的周长为4,则C的方程为( )
A.+=1 B.+y2=1
C.+=1 D.+=1
答案 A
解析 由e=,得=.①
又△AF1B的周长为4,
由椭圆定义,得4a=4,得a=,
代入①,得c=1,所以b2=a2-c2=2,
故椭圆C的方程为+=1.
思维升华 求圆锥曲线的标准方程是高考的必考题型,主要利用圆锥曲线的定义、几何性质,解得标准方程中的参数,从而求得方程.
已知双曲线-=1(a>0,b>0 )的一个焦点为F(2,0),且双曲线的渐近线与圆(x-2)2+y2=3相切,则双曲线的方程为( )
A.-=1 B.-=1
C.-y2=1 D.x2-=1
答案 D
解析 双曲线-=1的一个焦点为F(2,0),
则a2+b2=4,①
双曲线的渐近线方程为y=±x,
由题意得=,②
联立①②解得b=,a=1,
所求双曲线的方程为x2-=1,选D.
题型二 圆锥曲线的几何性质
例2 (1)若双曲线-=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( )
A. B. C. D.
(2)设抛物线(t为参数,p>0)的焦点为F,准线为l.过抛物线上一点A作l的垂线,垂足为B.设C,AF与BC相交于点E.若|CF|=2|AF|,且△ACE的面积为3,则p的值为________.
答案 (1)D (2)
解析 (1)由条件知y=-x过点(3,-4),∴=4,
即3b=4a,∴9b2=16a2,∴9c2-9a2=16a2,
∴25a2=9c2,∴e=.故选D.
(2)由(p>0)消去t可得抛物线方程为y2=2px(p>0),
∴F,
|AB|=|AF|=p,
可得A(p,p).
易知△AEB∽△FEC,∴==,
故S△ACE=S△ACF=×3p×p×
=p2=3,
∴p2=6,∵p>0,∴p=.
思维升华 圆锥曲线的几何性质是高考考查的重点,求离心率、准线、双曲线渐近线,是常考题型,解决这类问题的关键是熟练掌握各性质的定义,及相关参数间的联系.掌握一些常用的结论及变形技巧,有助于提高运算能力.
已知椭圆+=1(a>b>0)与抛物线y2=2px(p>0)有相同的焦点F,P,Q是椭圆与抛物线的交点,若PQ经过焦点F,则椭圆+=1(a>b>0)的离心率为____________.
答案 -1
解析 因为抛物线y2=2px(p>0)的焦点F为,设椭圆另一焦点为E.
当x=时,代入抛物线方程得y=±p,
又因为PQ经过焦点F,所以P且PF⊥OF.
所以|PE|= =p,
|PF|=p,|EF|=p.
故2a= p+p,2c=p,e==-1.
题型三 最值、范围问题
例3 若直线l:y=-过双曲线-=1(a>0,b>0)的一个焦点,且与双曲线的一条渐近线平行.
(1)求双曲线的方程;
(2)若过点B(0,b)且与x轴不平行的直线和双曲线相交于不同的两点M,N,MN的垂直平分线为m,求直线m在y轴上的截距的取值范围.
解 (1)由题意,可得c=2,=,
所以a2=3b2,且a2+b2=c2=4,
解得a=,b=1.故双曲线的方程为-y2=1.
(2)由(1)知B(0,1),依题意可设过点B的直线方程为
y=kx+1(k≠0),M(x1,y1),N(x2,y2).
由得(1-3k2)x2-6kx-6=0,
所以x1+x2=,
Δ=36k2+24(1-3k2)=12(2-3k2)>0⇒0
设MN的中点为Q(x0,y0),
则x0==,y0=kx0+1=,
故直线m的方程为y-=-,
即y=-x+.
所以直线m在y轴上的截距为,
由0
所以∈(-∞,-4)∪(4,+∞).
故直线m在y轴上的截距的取值范围为(-∞,-4)∪(4,+∞).
思维升华 圆锥曲线中的最值、范围问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和均值不等式法、换元法、导数法等方法求最值;二是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值与范围.
直线l:x-y=0与椭圆+y2=1相交于A,B两点,点C是椭圆上的动点,则△ABC面积的最大值为________.
答案
解析 由得3x2=2,
∴x=±,设点A在第一象限,
∴A(,),B(-,-),∴|AB|=.
设与l平行的直线l′:y=x+m与椭圆相切于P点.
则△ABP面积最大.
由得3x2+4mx+2m2-2=0,
∴Δ=(4m)2-4×3×(2m2-2)=0,
∴m=±.∴P到AB的距离即为l与l′的距离,
∴d=.∴S△ABC=××=.
题型四 定值、定点问题
例4 设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.
(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;
(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.
解 (1)因为|AD|=|AC|,EB∥AC,故∠EBD=∠ACD=∠ADC,所以|EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD|.
又圆A的标准方程为(x+1)2+y2=16,从而|AD|=4,所以|EA|+|EB|=4.
由题设得A(-1,0),B(1,0),|AB|=2,由椭圆定义可得点E的轨迹方程为+=1(y≠0).
(2)当l与x轴不垂直时,设l的方程为y=k(x-1)(k≠0),M(x1,y1),N(x2,y2).
由得(4k2+3)x2-8k2x+4k2-12=0.
则x1+x2=,x1x2=,
所以|MN|=|x1-x2|=.
过点B(1,0)且与l垂直的直线m:y=-(x-1),
点A到m的距离为,
所以|PQ|=2 =4.
故四边形MPNQ的面积
S=|MN||PQ|=12 .
可得当l与x轴不垂直时,四边形MPNQ面积的取值范围为(12,8).
当l与x轴垂直时,其方程为x=1,|MN|=3,|PQ|=8,四边形MPNQ的面积为12.
综上,四边形MPNQ面积的取值范围为[12,8).
思维升华 求定点及定值问题常见的方法有两种
(1)从特殊入手,求出定值,再证明这个值与变量无关.
(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
已知椭圆C:+=1(a>b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为1.
(1)求椭圆C的方程;
(2)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:|AN|·|BM|为定值.
(1)解 由已知=,ab=1.
又a2=b2+c2,解得a=2,b=1,c=.
∴椭圆方程为+y2=1.
(2)证明 由(1)知,A(2,0),B(0,1).
设椭圆上一点P(x0,y0),则+y=1.
当x0≠0时,直线PA方程为y=(x-2),
令x=0,得yM=.
从而|BM|=|1-yM|=.
直线PB方程为y=x+1.令y=0,得xN=.
∴|AN|=|2-xN|=.
∴|AN|·|BM|=·
=·
=
==4.
当x0=0时,y0=-1,|BM|=2,|AN|=2,
∴|AN|·|BM|=4.故|AN|·|BM|为定值.
题型五 探索性问题
例5 已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.
(1)求圆C1的圆心坐标;
(2)求线段AB的中点M的轨迹C的方程;
(3)是否存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.
解 (1)圆C1:x2+y2-6x+5=0化为(x-3)2+y2=4,∴圆C1的圆心坐标为(3,0).
(2)设M(x,y),
∵A,B为过原点的直线l与圆C1的交点,且M为AB的中点,
∴由圆的性质知MC1⊥MO,∴·=0.
又∵=(3-x,-y),=(-x,-y),
∴由向量的数量积公式得x2-3x+y2=0.
易知直线l的斜率存在,
∴设直线l的方程为y=mx,
当直线l与圆C1相切时,d==2,
解得m=±.
把相切时直线l的方程代入圆C1的方程,
化简得9x2-30x+25=0,解得x=.
当直线l经过圆C1的圆心时,M的坐标为(3,0).
又∵直线l与圆C1交于A,B两点,M为AB的中点,
∴
当Δ=0时,解得k2=,即k=±,此时方程可化为25x2-120x+144=0,即(5x-12)2=0,
解得x=∈,∴k=±满足条件.
当Δ>0时,
①若x=3是方程的解,则f(3)=0⇒k=0⇒另一根为x=0<,故在区间上有且仅有一个根,满足题意;
②若x=是方程的解,则f=0⇒k=±⇒另外一根为x=,<≤3,故在区间上有且仅有一根,满足题意;
③若x=3和x=均不是方程的解,则方程在区间上有且仅有一个根,只需f·f(3)<0⇒-
思维升华 (1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.
(2)反证法与验证法也是求解探索性问题常用的方法.
已知椭圆C:+=1(a>b>0)的离心率为,且过点(1,).若点M(x0,y0)在椭圆C上,则点N(,)称为点M的一个“椭点”.
(1)求椭圆C的标准方程.
(2)若直线l:y=kx+m与椭圆C相交于A,B两点,且A,B两点的“椭点”分别为P,Q,以PQ为直径的圆经过坐标原点,试判断△AOB的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.
解 (1)由题意知e==,∴e2===,
即a2=b2,又+=1,
∴a2=4,b2=3,∴椭圆C的标准方程为+=1.
(2)△AOB的面积为定值.理由如下:
设A(x1,y1),B(x2,y2),则P(,),Q(,),
∵以PQ为直径的圆经过坐标原点,
∴·=0,即+=0.
由得(3+4k2)x2+8mkx+4(m2-3)=0,
Δ=64m2k2-16(3+4k2)(m2-3)>0,
得3+4k2-m2>0.
x1+x2=-,x1x2=.
y1y2=(kx1+m)·(kx2+m)=k2x1x2+mk(x1+x2)+m2=,
代入+=0,即y1y2=-x1x2,得
=-·,即2m2-4k2=3,
∴|AB|=·|x1-x2|=·=·,由点O到直线AB的距离公式得d=,
∴S△AOB=|AB|d=··=,
把2m2-4k2=3代入上式,得S△AOB=.
第3课时
阶段重难点梳理
1.如图,椭圆E:+=1(a>b>0),经过点A(0,-1),且离心率为.
(1)求椭圆E的方程;
(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为2.
(1)解 由题设知=,b=1,
结合a2=b2+c2,解得a=,
所以椭圆的方程为+y2=1.
(2)证明 由题设知,直线PQ的方程为y=k(x-1)+1(k≠2),代入+y2=1,
得(1+2k2)x2-4k(k-1)x+2k(k-2)=0,由已知Δ>0,
设P(x1,y1),Q(x2,y2),x1x2≠0,
则x1+x2=,x1x2=,
从而直线AP,AQ的斜率之和
kAP+kAQ=+=+
=2k+(2-k)=2k+(2-k)
=2k+(2-k)=2k-2(k-1)=2.
2.椭圆C:+=1(a>b>0)的上,下顶点分别为A,B,右焦点为F,点P(,)在椭圆C上,且OP⊥AF.
(1)求椭圆C的方程;
(2)设不经过顶点A,B的直线l与椭圆交于两个不同的点M(x1,y1),N(x2,y2),且+=2,求椭圆右顶点D到直线l距离的取值范围.
解 (1)∵点P(,),∴kOP=,
又∵AF⊥OP,-×=-1,∴c=b,∴a2=4b2.
又点P(,)在椭圆上,
∴+=+==1,
解得a2=4,b2=1,故椭圆方程为+y2=1.
(2)(ⅰ)当直线l的斜率不存在时,方程为x=1,此时d=1.
(ⅱ)当直线l的斜率存在时,设直线l的方程为y=kx+m(m≠±1),
联立椭圆方程得(4k2+1)x2+8kmx+4(m2-1)=0,
由根与系数的关系得x1+x2=,x1x2=,
由Δ>0⇒4k2-m2+1>0,①
由+=2⇒x1+x2=2x1x2⇒=2,
即km=1-m2⇒k=-m(m≠0),②
把②式代入①式得m2>或0
d===
==,
令m2-1=t∈(-1,0)∪(,+∞),
则d==∈[0,1)∪(1,2),
综上可知d∈[0,2).
3.已知曲线C的方程是mx2+ny2=1(m>0,n>0),且曲线C过A(,),B(,)两点,O为坐标原点.
(1)求曲线C的方程;
(2)设M(x1,y1),N(x2,y2)是曲线C上两点,且OM⊥ON,求证:直线MN恒与一个定圆相切.
(1)解 由题可得解得m=4,n=1.
所以曲线C的方程为y2+4x2=1.
(2)证明 由题得y+4x=1,y+4x=1,x1x2+y1y2=0,
原点O到直线MN的距离
d==
=
=
= .
由x1x2+y1y2=0,得
xx=yy=(1-4x)(1-4x)
=1-4(x+x)+16xx,
所以xx=(x+x)-,
d=
= =,
所以直线MN恒与定圆x2+y2=相切.
4.已知椭圆+=1的左顶点为A,右焦点为F,过点F的直线交椭圆于B,C两点.
(1)求该椭圆的离心率;
(2)设直线AB和AC分别与直线x=4交于点M,N,问:x轴上是否存在定点P使得MP⊥NP?若存在,求出点P的坐标;若不存在,说明理由.
解 (1)由椭圆方程可得a=2,b=,
从而椭圆的半焦距c==1.
所以椭圆的离心率为e==.
(2)依题意,直线BC的斜率不为0,
设其方程为x=ty+1.
将其代入+=1,整理得(4+3t2)y2+6ty-9=0.
设B(x1,y1),C(x2,y2),
所以y1+y2=,y1y2=.
易知直线AB的方程是y=(x+2),
从而可得M(4,),同理可得N(4,).
假设x轴上存在定点P(p,0)使得MP⊥NP,
则有·=0.
所以(p-4)2+=0.
将x1=ty1+1,x2=ty2+1代入上式,整理得
(p-4)2+=0,
所以(p-4)2+=0,
即(p-4)2-9=0,解得p=1或p=7.
所以x轴上存在定点P(1,0)或P(7,0),
使得MP⊥NP.
5.已知椭圆C:+=1(a>b>0)的左,右焦点为F1,F2,离心率为e.直线l:y=ex+a与x轴,y轴分别交于点A,B两点,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设=λ.
(1)若λ=,求椭圆C的离心率;
(2)若△PF1F2为等腰三角形,求λ的值.
解 (1)因为A,B分别是直线l:y=ex+a与x轴,y轴的交点,
所以A,B的坐标分别为(-,0),(0,a),
由 得
所以点M的坐标是(-c,),
由=λ,得(-c+,)=λ(,a).
即解得λ=1-e2,因为λ=,所以e=.
(2)因为PF1⊥l,所以∠PF1F2=90°+∠BAF1为钝角,
要使△PF1F2为等腰三角形,必有|PF1|=|F1F2|,
即|PF1|=c.设点F1到l的距离为d,
由|PF1|=d===c,得
=e,
所以e2=,于是λ=1-e2=.
即当λ=时,△PF1F2为等腰三角形.
第九章 9.9范围、最值、定点、定值问题-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】: 这是一份第九章 9.9范围、最值、定点、定值问题-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】,文件包含第九章99范围最值定点定值问题-学生版docx、第九章99范围最值定点定值问题-教师版docx等2份学案配套教学资源,其中学案共51页, 欢迎下载使用。
第十二章 12.1导数应用问题-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】: 这是一份第十二章 12.1导数应用问题-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】,文件包含第十二章121导数应用问题-学生版docx、第十二章121导数应用问题-教师版docx等2份学案配套教学资源,其中学案共22页, 欢迎下载使用。
第十二章 12.3数列问题-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】: 这是一份第十二章 12.3数列问题-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】,文件包含第十二章123数列问题-学生版docx、第十二章123数列问题-教师版docx等2份学案配套教学资源,其中学案共23页, 欢迎下载使用。