专题46 与正方形有关的三垂线问题-2021年中考数学二轮复习经典问题专题训练
展开专题46 与正方形有关的三垂线问题
【规律总结】
【典例分析】
例1.(2020·江苏常州市·八年级期中)如图,四边形AFDC是正方形,和都是直角,且E,A,B三点共线,,则图中阴影部分的面积是( )
A.12 B.10 C.8 D.6
【答案】C
【分析】
易证△AEC≌△FBA,得AB=EC,即可求得.
【详解】
∵四边形AFDC是正方形
∴AC=AF,∠FAC=90°
∴∠CAE+∠FAB=90°
又∵∠CAE+∠ACE=90°
∴∠ACE=∠FAB
又∵∠CEA=∠FBA=90°
∴△AEC≌△FBA
∴AB=EC=4
∴图中阴影部分的面积=
故选C
【点睛】
本题考查全等三角形的判定,掌握全等三角形的判定条件是解题的关键.
例2.(2021·上海九年级专题练习)正方形ABCD在平面直角坐标系中的位置如图所示,已知A点的坐标(0,4),B点的坐标(﹣3,0),则点D的坐标是_____.
【答案】(4,1).
【分析】
过点D作DE⊥y轴于E,由“AAS”可证△ABO≌△DAE,可得AE=OB,DE=OA,即可求解.
【详解】
解:如图,过点D作DE⊥y轴于E,
∵∠BAO+∠DAE=∠ADE+∠DAE=90°,
∴∠BAO=∠ADE,
在△ABO和△DAE中,
,
∴△ABO≌△DAE(AAS),
∴AE=OB,DE=OA,
∵A(0,4),B(﹣3,0),
∴OA=4,OB=3,
∴OE=4﹣3=1,
∴点D的坐标为(4,1).
【点睛】
本题考查了正方形的性质,坐标与图形性质,全等三角形的判定和性质,熟记各性质并作辅助线构造出全等三角形是解题的关键.
例3.(2020·渠县清溪中学九年级期末)已知,如图,在Rt△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF,当点D在线段BC的反向延长线上,且点A,F分别在直线BC的两侧时.
(1)求证:△ABD≌△ACF;
(2)若正方形ADEF的边长为,对角线AE,DF相交于点O,连接OC,求OC的长度.
【答案】(1)证明见解析; (2)
【分析】
(1)由题意易得AD=AF,∠DAF=90°,则有∠DAB=∠FAC,进而可证AB=AC,然后问题可证;
(2)由(1)可得△ABD≌△ACF,则有∠ABD=∠ACF,进而可得∠ACF=135°,然后根据正方形的性质可求解.
【详解】
(1)证明:∵四边形ADEF为正方形,
∴AD=AF,∠DAF=90°,
又∵∠BAC=90°,
∴∠DAB=∠FAC,
∵∠ABC=45°,∠BAC=90°,
∴∠ACB=45°,
∴∠ABC=∠ACB,
∴AB=AC,
∴△ABD≌△ACF(SAS);
(2)解:由(1)知△ABD≌△ACF,
∴∠ABD=∠ACF,
∵∠ABC=45°,
∴∠ABD=135°,
∴∠ACF=135°,
由(1)知∠ACB=45°,
∴∠DCF=90°,
∵正方形ADEF边长为,
∴DF=4,
∴OC=DF=×4=2.
【点睛】
本题主要考查正方形的性质及等腰直角三角形的性质,熟练掌握正方形的性质及等腰直角三角形的性质是解题的关键.
【好题演练】
一、单选题
1.(2020·吉林长春市·九年级期中)如图,在正方形中,点E在边上,于点G,交于点F.若,,则的面积与四边形的面积之比是( )
A. B. C. D.
2.(2020·福建福州市·九年级开学考试)如图,点,点在射线上匀速运动,运动的过程中以为对称中心,为一个顶点作正方形,当正方形的面积为40时,点的坐标是( )
A. B. C. D.
二、填空题
3.(2021·上海九年级专题练习)如图,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°,延长FC、AE交于点M,连接DF、BM,若C为FM中点,BM=5,则FD的长为_____.
4.(2020·三明市第四中学八年级月考)如图在直线上一次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+2S2+2S3+S4=__.
三、解答题
5.(2020·河南郑州市第十九初级中学九年级月考)(1)如图1,正方形ABCD中,点P为线段BC上一个动点,若线段MN垂直AP于点E,交线段AB于点M,交线段CD于点N,证明:AP=MN;
(2)如图2,正方形ABCD中,点P为线段BC上一动点,若线段MN垂直平分线段AP,分别交AB,AP,BD,DC于点M,E,F,N.求证:EF=ME+FN;
(3)若正方形ABCD的边长为2,求线段EF的最大值与最小值.
6.(2020·江西吉安市·九年级期中)如图1,已知正方形和正方形,点在同一直线上,连接,,与相交于点.
(1)求证:.
(2)如图2,是边上的一点,连接交于点,且.
①求证:;
②若,直接写出的值.
专题15 过端点向中线作垂线问题(解析版)-2021年中考数学二轮复习经典问题专题训练: 这是一份专题15 过端点向中线作垂线问题(解析版)-2021年中考数学二轮复习经典问题专题训练,共7页。
专题53 与二次函数有关的综合问题(1)-2021年中考数学二轮复习经典问题专题训练: 这是一份专题53 与二次函数有关的综合问题(1)-2021年中考数学二轮复习经典问题专题训练,文件包含专题53与二次函数有关的综合问题1原卷版-2021年中考数学二轮复习经典问题专题训练docx、专题53与二次函数有关的综合问题1解析版-2021年中考数学二轮复习经典问题专题训练docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
专题30 与直径有关的辅助线问题-2021年中考数学二轮复习经典问题专题训练: 这是一份专题30 与直径有关的辅助线问题-2021年中考数学二轮复习经典问题专题训练,文件包含专题30与直径有关的辅助线问题原卷版-2021年中考数学二轮复习经典问题专题训练docx、专题30与直径有关的辅助线问题解析版-2021年中考数学二轮复习经典问题专题训练docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。