高中数学人教A版 (2019)必修 第二册第十章 概率10.1 随机事件与概率授课ppt课件
展开问题一:观察下列事件,你能发现什么特点?(1)将一枚硬币抛掷2次,观察正面、反面出现的情况;(2)从你所在的班级随机选择10名学生,观察近视眼人数(3)在一批灯管中任意抽取一只,测试它的寿命;(4)记录某地区7月份的降雨量. 特点:(1)在相同条件下可以重复进行;(2)所有可能结果是明确可知的,并且不止一个。
新知讲授(一)——随机试验
我们把对随机现象的实现和对它的观察称为随机试验,简称试验,常用字母E表示。我们通常研究以下特点的随机试验:(1)试验可以在相同条件下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但事 先不确定出现哪个结果。
新知讲授(二)——样本空间
思考一:体育彩票摇奖时,将10个质地和大小完全相同、分别标号0,1,2,...,9的球放入摇奖器中,经过充分搅拌后摇出一个球,观察这个球的号码。这个随机试验共有多少个可能结果?如何表示这些结果?根据球的号码,共有10种可能结果。如果用m表示“摇出的球的号码为m”这一结果,那么所有可能结果可用集合表示{0,1,2,3,4,5,6,7,8,9}.
我们把随机试验E的每个可能的基本结果称为样本点,全体样本点的集合称为试验E的样本空间。一般地,我们用Ω表示样本空间,用ω表示样本点。(在本书中,我们只讨论Ω为有限集的情况。)
例1、抛掷一枚硬币,观察它落地时哪一面朝上,写出试验的样本空间。解:因为落地时只有正面朝上和反面朝上两个可能结果,所以试验的样本空间可以表示为Ω={正面朝上,反面朝上}如果用h表示“正面朝上”,用t表示“反面朝上”,则样本空间Ω={h,t}
例2、抛掷一枚骰子,观察它落地时朝上的面的点数,写出试验的样本空间.解:用i表示朝上面的“点数为i”.由于落地时朝上面的点数有1,2,3,4,5,6,共6个可能的基本结果,所以试验的样本空间可以表示为Ω={1,2,3,4,5,6}.
例3、抛掷两枚硬币,观察它们落地时朝上的面的情况,写出试验的样本空间.解:抛两枚硬币,第一枚硬币可能的基本结果用x表示,第二枚硬币可能的基本结果用y表示,那么试验的样本点可用(x,y)表示.所以试验的样本空间Ω={(正面,正面),(正面,反面),(反面,正面),(反面,反面)}.
例3、抛掷两枚硬币,观察它们落地时朝上的面的情况,写出试验的样本空间.解:如果用1表示“正面朝上”,用0表示“反面朝上”,所以试验的样本空间Ω={(1,1),(1,0),(0,1),(0,0)}.接下来我们用树状图再次理解一下解答过程(图10.1—1)。
试验的样本空间的表示方法:(1)用树状图表示试验结果;(2)用集合表示(列举法)。
某运动员射击打靶,观察它中靶的环数,写出试验的样本空间.解:用i表示朝上面的“环数为i”.由于环数有0,1,2,3,4,5,6,7,8,9,10共11个可能的基本结果,所以试验的样本空间可以表示为Ω={0,1,2,3,4,5,6,7,8,9,10}.
新知讲授(三)——随机事件
思考二:在体育彩票摇号试验中,摇出“球的号码为奇数”是随机事件吗?摇出“球的号码为3的倍数”是否也是随机事件?“球的号码为奇数”和“球的号码为3的倍数”都是随机事件。
思考三:如果用集合的形式来表示它们,那么这些集合与样本空间有什么关系?用A表示随机事件“球的号码为奇数”,则A发生,当且仅当摇出的号码为1,3,5,7,9之一,即事件A发生等价于摇出的号码属于集合{1,3,5,7,9}。因此,可以用样本空间Ω={0,1,2,3,4,5,6,7,8,9}的子集{1,3,5,7,9}表示随机事件A.同理,可以用样本空间的子集{0,3,6,9}表示随机事件“球的号码为3的倍数”.
一般地,随机试验中的每个随机事件都可以用这个试验的样本空间的子集来表示。为了描述方便,我们将样本空间Ω的子集称为随机事件,简称事件,并把只包含一个样本点的事件称为基本事件。随机事件一般用大写字母A,B,C,...表示。在每次试验中,当且仅当A中某个样本点出现时,称为事件A发生。
Ω作为自身的子集,包含了所有的样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件。而空集Φ不包含任何样本点,在每次试验中都不会发生,我们称Φ为不可能事件。必然事件与不可能事件不具有随机性。为了方便统一处理,将必然事件和不可能事件作为随机事件的两个极端情形。每个事件都是样本空间Ω的一个子集。
思考四:事件有哪些分类?
必然事件Ω:条件S下,一定会发生的事件,叫做相对于条件S的必然事件
在条件S下可能发生也可能不发生的事件叫做相对于条件S的随机事件
不可能事件Φ :条件S下,一定不会发生的事件,叫相对于条件S的不可能事件
例4、如图10.1-2,一个电路中有A,B,C三个电器元件,每个元件可能正常,也可能失效。把这个电路是否为通路看成是一个随机现象,观察这个电路中各元件是否正常。(1)写出试验的样本空间;(2)用集合表示下列事件:M=“恰好两个元件正常”N=“电路是通路”T=“电路是断路”
解:(1)分别用x1,x2和x3表示元件A,B和C的可能状态,则这个电路的工作状态可用(x1,x2,x3)表示.同时,用1表示元件的“正常”状态,用0表示“失效”状态,则样本空间Ω={(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,1)}
解:(1)用树状图将所有的可能结果表示如下(如图10.1-3)
解:(2)“恰好两个元件正常”等价于(x1,x2,x3)∈Ω,且x1,x2,x3中恰有两个为1,所以M={(1,1,0),(1,0,1),(0,1,1)}“电路是通路”等价于(x1,x2,x3)∈Ω,且x1=1,x2,x3中至少有一个是1,所以N={(1,1,0),(1,0,1),(1,1,1)}同理,“电路是断路”等价于(x1,x2,x3)∈Ω,x1=0,或x1=1,x2=x3=0所以T={(0,0,0),(0,1,0),(0,0,1),(0,1,1),(1,0,0)}
1、判断下列事件的类型?(1)掷一枚硬币,出现正面 (2)某地12月12日下雨(3)如果a>b,那么a-b>0 (4)明天是星期八解:(1)随机事件 (2)随机事件 (3)必然事件 (4)不可能事件
2、抛掷三枚硬币,可能“正面朝上“,也可能”反面朝上“。把抛掷三枚硬币朝上的情况看成是一个随机现象,观察这个现象中朝上的可能性。(1)写出试验的样本空间;(2)用集合表示下列事件: M=“恰好两个正面朝上” N=“最多一个正面朝上”
解:(1)分别用x1,x2和x3表示每一枚硬币的可能状态,则这个随机事件的结果可用(x1,x2,x3)表示.同时,用1表示”正面朝上“,用0表示“反面朝上”,则样本空间Ω={(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,1)}
人教A版 (2019)必修 第二册10.1 随机事件与概率图片课件ppt: 这是一份人教A版 (2019)必修 第二册10.1 随机事件与概率图片课件ppt,共16页。PPT课件主要包含了情境引入,生活中的随机事件,事件的分类,课堂探究,可预知性,可重复性,随机性,应用举例,课堂练习,归纳总结等内容,欢迎下载使用。
人教A版 (2019)必修 第二册10.1 随机事件与概率教案配套ppt课件: 这是一份人教A版 (2019)必修 第二册10.1 随机事件与概率教案配套ppt课件,共30页。
人教A版 (2019)必修 第二册10.1 随机事件与概率完美版课件ppt: 这是一份人教A版 (2019)必修 第二册10.1 随机事件与概率完美版课件ppt,共32页。PPT课件主要包含了学习目标,新知学习,易错辨析,典例剖析,随堂小测,课堂小结等内容,欢迎下载使用。