高中数学第一章 基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.1.1角的概念的推广教案设计
展开1、掌握用“旋转”定义角的概念,理解并掌握“正角”“负角”“象限角”“终边相同的角”的含义
2、掌握所有与α角终边相同的角(包括α角)的表示方法
3、体会运动变化观点,深刻理解推广后的角的概念;
二、教学重点、难点
重点:理解并掌握正角负角零角的定义,掌握终边相同的角的表示方法.
难点:终边相同的角的表示.
三、教学方法:
讲授法、讨论法、媒体课件演示
四、内容分析:
本节主要介绍推广角的概念,引入正角、负角、零角的定义,象限角的概念以及终边相同的角的表示方法.树立运动变化的观点,理解静是相对的,动是绝对的,并由此深刻理解推广后的角的概念.教学方法可以选用讨论法,通过实际问题,教师抽象并通过用几何画板多媒体课件演示角的形成更加形象直观,如螺丝扳手紧固螺丝、时针与分针、车轮的旋转等等,都能形成角的概念,给学生以直观的印象,形成正角、负角、零角的概念,明确“规定”的实际意义,突出角的概念的理解与掌握.通过具体问题,让学生从不同角度作答,理解终边相同的角的概念,并给以表示,从特殊到一般,归纳出终边相同的角的表示方法,达到突破难点之目的.
五、教学过程:
教学环节
教学内容
师生互动
设计意图
复
习
引
入
1、角的概念
2、从实例出发,发现很多问题中角的范围发生了变化。
1、初中是如何定义角的?
从一个点出发引出的两条射线构成的几何图形
这种概念的优点是形象、直观、容易理解,但它是从图形形状来定义角,因此角的范围是,这种定义称为静态定义,其弊端在于“狭隘”
2、生活中很多实例会不在该范围
体操运动员转体720º,跳水运动员向内、向外转体1080º
经过1小时时针、分针、秒针转了多少度?
这些例子不仅不在范围,而且方向不同,有必要将角的概念推广到任意角,想想用什么办法才能推广到任意角?(运动)
1、引导学生通过切身感受来认识角的概念推广的必要性。
2、为引入正角与负角的概念做好准备。
新
概
念
产
生
1.角的概念的推广
⑴“旋转”形成角
一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到另一位置OB,就形成角α.旋转开始时的射线OA叫做角α的始边,旋转终止的射线OB叫做角α的终边,射线的端点O叫做角α的顶点.
突出“旋转” 注意:“顶点”“始边”“终边”
⑵.“正角”与“负角”“0角”
我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,如图,以OA为始边的角α=210°,β=-150°,γ=660°,
特别地,当一条射线没有作任何旋转时,我们也认为这时形成了一个角,并把这个角叫做零角.记法:角或 可以简记成
⑶意义
用“旋转”定义角之后,角的范围大大地扩大了
1 角有正负之分 如:=210 =150 =660
2 角可以任意大
实例:体操动作:旋转2周(360×2=720) 3周(360×3=1080)
3 还有零角
一条射线,没有旋转
角的概念推广以后,它包括任意大小的正角、负角和零角.要注意,正角和负角是表示具有相反意义的旋转量,它的正负规定纯系习惯,就好象与正数、负数的规定一样,零角无正负,就好象数零无正负一样.
1、教师用多媒体演示角的形成。
2、教师指导学生依定义分别作出大小和方向不同的角,并指出角的“顶点”“始边”“终边”
3、教师设计以下问题组织学生讨论思考回答:
(1)正角与负角有何本质区别?
(2)正角与负角的实际意义有何不同?
(3)角的概念推广以后应该包括哪些角?
4、教师应注意指明:正角与负角是具有相反意义的旋转量,它的正负规定纯系习惯,就好像与正数、负数的规定一样,零角无正负。
1、使学生通过亲手作图获取对新概念的直观印象。
2、促使学生从本质上认识角的形成以及角的分类。
3、通过观察旋转绝对量的变化学习角的加减运算。
4、让学生清楚角的正负规定纯系习惯。
新
概
念
形
成
2.“象限角”
为了研究方便,我们往往在平面直角坐标系中来讨论角
角的顶点合于坐标原点,角的始边合于轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)
例如:30、390、330是第Ⅰ象限角,300、60是第Ⅳ象限角,585、1180是第Ⅲ象限角,2000是第Ⅱ象限角等
提出问题,学生讨论回答:
(1)在坐标系中表示角时,对角的顶点与角的始边有什么要求?
(2)你对“角的终边落在坐标轴上,则此角不属于任何一个象限”这句话是怎么理解的?
(3)分别举出几个第一、二、三、四象限角的例子。
学习新概念与问题讨论相结合,进一步加深学生对于新概念的理解与掌握。
新
概
念
形
成
3.终边相同的角
⑴观察:390,330角,它们的终边都与30角的终边相同
⑵探究:终边相同的角都可以表示成一个0到360的角与个周角的和:
390=30+360
330=30360
30=30+0×360
1470=30+4×360
1770=305×360
⑶结论:所有与终边相同的角连同在内可以构成一个集合:
即:任何一个与角终边相同的角,都可以表示成角与整数个周角的和
⑷注意以下四点:
(1)
(2) 是任意角;
(3)与之间是“+”号,
如-30°,应看成+(-30°);
(4)终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360°的整数倍
引导学生观察分析:
(1)终边相同的角有何特点?(相差整数个周角)。
(2)试表示出与30终边相同的角。
(3)用集合表示终边相同的角请注意以下问题:
①;
②是任意角;
③终边相同的角不一定相等,但是相等的一定终边相同,终边相同的角有无数多个,它们相差360的整数倍。
从观察分析入手,通过具体例子,归纳总结出终边相同的角的表示方法,并初步认识用集合表示终边相同的角需注意的几个问题。
讲
解
范
例
例1 在0°到360°范围内,找出与下列各角终边相同的角,并判断它是哪个象限的角
解:⑴∵-120º=-360º+240º,
∴240º的角与-140º的角终边相同,它是第三象限角.
⑵∵640º=360º+280º,
∴280º的角与640º的角终边相同,它是第四象限角.
⑶∵-950º12’=-3360º+129º48’,
∴129º48’的角与-950º12’的角终边相同,它是第三象限角.
例2写出与下列各角终边相同的角的集合S,并把S中在间的角写出来:
解:(1)
S中在-360°~720间的角是
-1×360°+60°=-280°;
0×360°+60°=60°;
1×360°+60°=420°.
(2)
S中在-360°~720间的角是
0×360°-21°=-21°;
1×360°-21°=339°;
2×360°-21°=699°.
(3)
S中在-360°~720°间的角是
-2×360°+363º14’=-356º46’;
-1×360°+363º14’=3º14’;
0×360°+363º14’=363º14’.
1、选例1的第一小题板书来示范解题的步骤,其他例题请几个学生板演,,其他学生在下面自己完成,针对板演同学所出现的步骤上的问题及时给予更正,教师要适时引导学生做好总结归纳。
2、例2可以组织学生讨论,然后让学生回答,互相更正,对出现的错误进行纠正讲解,并要求学生熟练掌握这些常见角的集合的表示方法。
1、例1主要让学生学会如何在0°到360°范围内,找出与某个角终边相同的角,并判断它是哪个象限的角。
2、例4主要想解决:所有与终边相同的角连同在内可以构成一个集合:
即:任何一个与角终边相同的角,都可以表示成角与整数个周角的和。在这里:
①;
②是任意角;
③终边相同的角不一定相等,但是相等的一定终边相同,终边相同的角有无数多个,它们相差360的整数倍。
课
堂
练
习
1.锐角是第几象限的角?第一象限的角是否都是锐角?小于90°的角是锐角吗?0°~90°的角是锐角吗?
(答:锐角是第一象限角;第一象限角不一定是锐角;小于90°的角可能是零角或负角,故它不一定是锐角;0°~90°的角可能是零角,故它也不一定是锐角.)
总结有关角的集合表示.
锐角:{θ|0°<θ<90°},
0°~90°的角:{θ|0°≤θ≤90°};
小于90°角:{θ|θ<90°}.
2.已知角的顶点与坐标系原点重合,始边落在x轴的正半轴上,作出下列各角,并指出它们是哪个象限的角?
(1)420°,(2)-75°,(3)855°,(4)-510°.
(答:(1)第一象限角,(2)第四象限角,(3)第二象限角,(4)第三象限角)
课堂练习的目的是对本节课的内容进行综合回顾,教师可以放手让学生自行解决,然后教师加以点拨。
归
纳
小
结
从知识、方法两个方面对本节课的内容进行归纳总结。
本节课我们学习了正角、负角和零角的概念,象限角的概念,要注意如果角的终边在坐标轴上,就认为这个角不属于任何象限.本节课重点是学习终边相同的角的表示法.严格区分“终边相同”和“角相等”;“轴线角”“象限角”和“区间角”;“小于90°的角”“第一象限角”“0°到90°的角”和“锐角”的不同意义.
请学生在教师的叙述回顾中再现本节的核心内容。
课
后
作
业
1.下列命题中正确的是( )
A.终边在y轴非负半轴上的角是直角
B.第二象限角一定是钝角
C.第四象限角一定是负角
D.若β=α+k·360°(k∈Z),则α与β终边相同
2.与120°角终边相同的角是( )
A.-600°+k·360°,k∈Z B.-120°+k·360°,k∈Z
C.120°+(2k+1)·180°,k∈Z D.660°+k·360°,k∈Z
3.若角α与β终边相同,则一定有( )
A.α+β=180° B.α+β=0°
C.α-β=k·360°,k∈Z D.α+β=k·360°,k∈Z
4.与1840°终边相同的最小正角为 ,与-1840°终边相同的最小正角是 .
5.今天是星期一,100天后的那一天是星期 ,100天前的那一天是星期 .
6.钟表经过4小时,时针与分针各转了 (填度).
7.在直角坐标系中,作出下列各角
(1)360° (2)720° (3)1080° (4)1440°
8.已知A={锐角},B={0°到90°的角},C={第一象限角},D={小于90°的角}.
求A∩B,A∪C,C∩D,A∪D.
9.将下列各角表示为α+k·360°(k∈Ζ,0°≤α<360°)的形式,并判断角在第几象限.
(1)560°24′ (2)-560°24′ (3)2903°15′
(4)-2903°15′ (5)3900° (6)-3900°
本次作业主要涉及以下重要内容:
1、正角、负角、象限角的基本概念;
2、终边相同的角的概念及终边相同的角的集合表示法。
这些内容对以后的学习有很重要的作用,请同学们认真落实完成。
通过作业让学生巩固以下三点:
1、角的概念推广后的范围;
2、弄清角的分类;
3、终边相同的角的集合表示法。
高中数学人教版新课标B必修41.1.1角的概念的推广教案设计: 这是一份高中数学人教版新课标B必修41.1.1角的概念的推广教案设计,共6页。教案主要包含了三象限角平分线上的角的集合.等内容,欢迎下载使用。
人教版新课标B必修42.4.1向量在几何中的应用教案及反思: 这是一份人教版新课标B必修42.4.1向量在几何中的应用教案及反思,共3页。教案主要包含了教学目标,教学重点难点,教学方法,教学内容安排等内容,欢迎下载使用。
高中数学人教版新课标B必修42.1.1向量的概念教学设计: 这是一份高中数学人教版新课标B必修42.1.1向量的概念教学设计,共4页。教案主要包含了教学目标,教学重点与难点,教学方法,教学过程等内容,欢迎下载使用。