搜索
    上传资料 赚现金
    专题1.6 极值点偏移第四招——含指数式的极值点偏移问题-2020届高考数学压轴题讲义(解答题)(解析版)
    立即下载
    加入资料篮
    专题1.6 极值点偏移第四招——含指数式的极值点偏移问题-2020届高考数学压轴题讲义(解答题)(解析版)01
    专题1.6 极值点偏移第四招——含指数式的极值点偏移问题-2020届高考数学压轴题讲义(解答题)(解析版)02
    专题1.6 极值点偏移第四招——含指数式的极值点偏移问题-2020届高考数学压轴题讲义(解答题)(解析版)03
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题1.6 极值点偏移第四招——含指数式的极值点偏移问题-2020届高考数学压轴题讲义(解答题)(解析版)

    展开
    这是一份专题1.6 极值点偏移第四招——含指数式的极值点偏移问题-2020届高考数学压轴题讲义(解答题)(解析版),共10页。

    近几年全国各地的模拟试题、高考试题中频繁出现一类考查函数导数的题型:在给定区间内研究两函数之间的不等关系. 要解决这类问题,往往是直接构造某个新函数,或者分离变量之后构造新的函数,通过研究构造的新函数的单调性来求出最值或者得到我们想要的不等关系. 这一类问题多数与指数函数有关,解题时除了直接构造一元函数求解,还可将问题转化为对数问题,再用对数平均不等式求解,本文对此类问题做一探究.

    2016年新课标I卷理数压轴21题)已知函数有两个零点.证明:.

    法二:参变分离再构造差量函数

    由已知得:,不难发现

    故可整理得:

    ,则

    那么,当时,单调递减;当时,单调递增.学科*

    ,构造代数式:

    [来源:##Z#X#X#K]

    ,故单调递增,有

    因此,对于任意的[来源:学科网ZXXK]

    可知不可能的同一个单调区间上,

    不妨设,则必有[来源:##Z#X#X#K]

    ,则有

    上单调递增,因此:

    整理得:

    法三:参变分离再构造对称函数

    由法二,得,构造

    利用单调性可证,此处略. 学科*

    法五:利用对数平均不等式

    参变分离得:,由得,

    将上述等式两边取以为底的对数,得

    化简得:

    由对数平均不等式得:

    从而

        

         学科*

    等价于:

             

    ,故,证毕. 学科*

    (2010天津理)已知函数 .如果,且.

    证明:.

    设函 ,其图象与轴交于两点,且.证明:为函数的导函数).

    【解析】根据题意:移项取对数得:

    -得:,即:         

    [来源:**Z*X*X*K]

    招式演练

    已知函数上有两个零点为.

    1)求实数的取值范围;

    2)求证:.

    【答案】(1;2)见解析.[来源:学科网ZXXK]

    【解析】试题分析:(1上有两个零点等价于方程有两个根,即有两个交点,研究函数 单调性,结合数形结合可得结果;(2 两式相除可得,设,只需证明即可.%科网

    试题解析:(1上有两个零点,方程,则,于是时, ,即上单调递减;当时, ,即 【方法点睛】本题主要考查利用导数研究函数单调性进而求最值、不等式恒成立问题以及不等式证明问题,属于难题.对于求不等式恒成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数, 这样就把问题转化为一端是函数, 另一端是参数的不等式,便于问题的解决. 但要注意分离参数法不是万能的, 如果分离参数后,得出的函数解析式较为复杂, 性质很难研究, 就不要使用分离参数法.

    已知函数.[来源:Zxxk.Com]

    (1)的单调区间;

    (2)证明:时,.

    【解析】 (1) 上单调递增,在上单调递减;

    (2)(1)知当时,

    不妨设,因为,即,则

    要证明,即,只需证明,即[来源:学科网ZXXK]

    等价于*科网

    ,则

    ,则

    所以单调递减,,即,所以单调递减,

    所以,得证.

    已知函数,若任意不同的实数满足,求证:.

    方案一(差为自变量):

    法三:

    原式

    ,则令[来源:§§]

    为减函数,

    有最大值

    ,证毕.

    已知函数,其中为自然对数的底数.

    1)讨论函数的单调性;

    2)若函数有两个零点,证明: .

    【答案】(1)见解析(2)见解析

    【解析】(

    时, ,则函数R上的单调递增函数.

    时,令,则

    上是单调减函数;

    ,则上是单调增函数.

    【新题试炼】

    2018中学生标准学术能力诊断】已知函数.

    )当时,证明:

    )当时,如果,且,证明:.

    【答案】)见解析;()见解析.

    【解析】)当时,,由,得

    上单调递减,在上单调递增. *科网[来源:__Z_X_X_K]

    时,取得极小值,即最小值.

    时,

    ,即.

    .

    ,又内是增函数,

    ,即.

     

    相关试卷

    高考数学压轴难题归纳总结培优专题1.6 极值点偏移第四招--含指数式的极值点偏移问题 (含解析): 这是一份高考数学压轴难题归纳总结培优专题1.6 极值点偏移第四招--含指数式的极值点偏移问题 (含解析),共10页。

    专题1.4 极值点偏移第二招——含参数的极值点偏移问题-2020届高考数学压轴题讲义(解答题)(解析版): 这是一份专题1.4 极值点偏移第二招——含参数的极值点偏移问题-2020届高考数学压轴题讲义(解答题)(解析版),共17页。试卷主要包含了已知是函数的两个零点,且,已知函数,若存在,使,求证等内容,欢迎下载使用。

    专题1.5 极值点偏移第三招——含对数式的极值点偏移问题-2020届高考数学压轴题讲义(解答题)(解析版): 这是一份专题1.5 极值点偏移第三招——含对数式的极值点偏移问题-2020届高考数学压轴题讲义(解答题)(解析版),共12页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题1.6 极值点偏移第四招——含指数式的极值点偏移问题-2020届高考数学压轴题讲义(解答题)(解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map