年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    高一数学必修1知识点总结及练习题 (1)

    高一数学必修1知识点总结及练习题 (1)第1页
    高一数学必修1知识点总结及练习题 (1)第2页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高一数学必修1知识点总结及练习题 (1)

    展开

    这是一份高一数学必修1知识点总结及练习题 (1),共5页。试卷主要包含了集合有关概念,集合间的基本关系,集合的运算等内容,欢迎下载使用。
    期中考复习第一章 集合与函数概念(10,11班)一、集合有关概念集合的含义集合的中元素的三个特性:(1)  元素的确定性如:世界上最高的(P1,1)(2)  元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}解题时,最后注意检验是否满足互异性研究p3,7、8;(3)  元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集3.集合的表示:{ } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)  用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)  集合的表示方法:列举法与描述法       注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集  N*或 N+   整数集Z  有理数集Q  实数集R   2,集合的表示法(研究P2,8;)1)  列举法:{a,b,c……}2)  描述法:M={y|y=x2-2x+1,xR} M={x|y=x2-2x+1,xR}(注意代表元素!)(P5,2)3)  Venn图:(研究P5,4/7/94、集合的分类:(1)  有限集   含有有限个元素的集(2)  无限集   含有无限个元素的集(3)  空集     不含任何元素的集合  例:{x|x2=-5(研究P3,2)二、集合间的基本关系切记,有包含关系要优先考虑空集(P3、10)1.包含关系子集最高次项前面有参数时,要讨论它与0的关系注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。2.相等关系:A=B  (55,且55,则5=5)实例:设  A={x|x2-1=0}  B={-1,1}   元素相同则两集合相等即: 任何一个集合是它本身的子集。AA真子集:如果AB,且A B那就说集合A是集合B的真子集,记作AB(或BA)如果 AB, BC ,那么 AC 如果AB  同时 BA 那么A=B规定: 空集是任何集合的子集, 空集是任何非空集合的真子集       有n个元素的集合,含有2n个子集,2n-1个真子三、集合的运算 p3,6;P44/7/10,P510;P6,5/8运算类型             由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作A交B),即AB={x|xA,且xB}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作A并B),即AB ={x|xA,或xB}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集记作,即CSA=       AA=A  AΦ=ΦAB=BAABA ABBAA=AAΦ=AAB=BAABABB(CuA) (CuB)= Cu (AB)(CuA) (CuB)= Cu(AB)A (CuA)=UA (CuA)= Φ 例题:1.下列四组对象,能构成集合的是                                      A某班所有高个子的学生  B著名的艺术家 C一切很大的书 D 倒数等于它自身的实2.集合{a,b,c }的真子集共有       3.若集合M={y|y=x2-2x+1,xR},N={x|x0},则M与N的关系是          .4.设集合A=,B=,若AB,则的取值范围是       5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人两种实验都做错得有4人,则这两种实验都做对的有      7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若BC≠Φ,AC=Φ,求m的(注意:解不等式时,乘以除以一个数时,注意讨论它的符号,如果是负数,记住变号。)二、函数的有关概念  定义(P9,1/;P10,1)1.定义域:能使函数式有意义的实数x的集合称为函数的定义域(1)具体函数的定义域时列不等式组的主要依据(P30,9;P37,2/4)(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零   (3)对数式的真数必须大于零(4)指数、对数式的底必须大于零且不等于1.  (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,  (7)实际问题中的函数的定义域还要保证实际问题有意义.抽象函数定义域:(P9,6;P21,5;)       相同函数的判断方法表达式相同(与表示自变量和函数值的字母无关)       定义域一致 (P9,3时具备)2.值域 : 先考虑其定义(P9,7/8;P10,10/6;P14,6)(1)观察法 遇见上下都有x,优先分离常数(2)配方法(3)代换法2、函数的解析表达(P10,9、4)求函数的解析式的主要方法有1)       凑配法已知fx2,求f(x)2)       待定系数法已知一次函数f(x)满足f(f(x))4x1,求f(x)3)       换元法已知f(2)x4,求f(x)注意新换元的范围4)       消参法(函数方程法)已知:3. 函数图象知识归纳A、  图象变换法常用变换方法有三种1)       平移变换2)       伸缩变换3)       对称变换(P10,24.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区5.映射(箭射靶,且箭要全射出去)定义:(P11,1/3/5/6/7/9/10)对于映射fAB来说,则应满足(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的(2)集合A中不同的元素,在集合B中对应的象可以是同一个(3)不要求集合B中的每一个元素在集合A中都有原象一一映射:一对一,且集合B当中没有多余的元素(P11,8)6.分段函数   (一般画图处理题目(P11,9;P12,7;P24,10)(1)在定义域的不同部分上有不同的解析表达式的函数(2)各部分的自变量的取值情况(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集注意:分段函数单调性,除了保证每一段的单调性,还要保证最值之间的关系,即整体的单调性补充:复合函数如果y=f(u)(uM),u=g(x)(xA),则 y=f[g(x)]=F(x)(xA)  称为f、g的复合函数。二.函数的性质1.函数的单调性(局部性质)(P12,1/2;P14,2/3)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质(2) 图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方(A) 定义法:(P14,9/8;P15,9;P30,10 任取x1,x2D,且x1<x2 作差f(x1)-f(x2) 变形(通常是因式分解和配方) 定号(即判断差f(x1)-f(x2)的正负) 下结论(指出函数f(x)在给定的区间D上的单调性)(B)图象法(从图象上看升降)(C)复合函数的单调性(P14,4;p31,9;P39,8)复合函数f[g(x)]的单调性与构成它的函数u=g(x)y=f(u)的单调性密切相关,其规律:同增异减注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. (D)利用已知函数的单调性。(一次函数,二次函数,反比例函数,双勾函数,对数函数,指数函数)(P12,3/4/5/6;P14,1/5)注:增+增=增;减加减=减(P13,3/4)8.函数的奇偶性(整体性质(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数(3)具有奇偶性的函数的图象的特偶函数的图象关于y轴对称;奇函数的图象关于原点对称(图像法)利用定义判断函数奇偶性的步骤首先确定函数的定义域,并判断其是否关于原点对称确定f(-x)与f(x)的关系作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数注意:(1)函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .奇*奇=偶,偶*偶=偶,奇*偶=奇   (2)奇函数在对称区间单调性相同,如果x=0有意义,注意利用f(0)=0解题;偶函数在对称区间单调性相反。9.抽象函数的单调性和奇偶性(P14,9;P15,10;P24,11,12;P23,9/6)10.函数最大(小)值 利用二次函数的性质求函数的最大(小)(P16,9/2/5/8;P17,8)先画图,画出对称轴,移动区间对于开口向下的情况,讨论类似。其实无论开口向上还是向下,都只有以下两种结论1)若,则2)若,则另外,当二次函数开口向上时,自变量的取值离轴越远,则对应的函数值越大;反过来,当二次函数开口向下时,自变量的取值离开轴越远,则对应的函数值越小。 利用图象求函数的最大(小)(P22,5;) 利用函数单调性的判断函数的最大(小)值如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b)如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b)11:恒成立问题转化为最值问题,(一般求什么,就把它放到一边。)(p24,9;P17,8;P37,6/7/10;p44,6;p45,4;)例题:1.求下列函数的定义域:            2.设函数的定义域为,则函数的定义域为_  _   3.若函数的定义域为,则函数的定义域是         4.函数 ,若,则=            5.求下列函数的值域:           (3)               (4)6.已知函数,求函数的解析式7.已知函数满足,则=             8.设是R上的奇函数,且当时,,则当=      在R上的解析式为                        9.求下列函数的单调区间      10.判断函数的单调性并证明你的结论.11.设函数判断它的奇偶性并且求证:                  第二章 基本初等函一、指数函数(一)指数与指数幂的运算       负数没有偶次方根;0的任何次方根都是0,记是奇数时,,当是偶数时,2.分数指数幂正数的分数指数幂的意义,规定       0的正分数指数幂等于0,0的负分数指数幂没有意3.实数指数幂的运算性质(1)·  (2)   (3)注意利用平方差公式,完全平方之间的关系,以及立方差公式。(p27,9,10,p28,9/10;p29,4/6) (二)指数函数及其性质(注意值域大于零)2、指数函数的图象和性质a>10<a<1定义域 R定义域 R值域y>0值域y>0在R上单调递在R上单调递非奇非偶函数非奇非偶函数函数图象都过定点(0,1函数图象都过定点(0,1注意:利用函数的单调性,结合图象还可以看出
    (1)在[a,b]上,值域是
    (2)若,则取遍所有正数当且仅当
    (3)对于指数函数,总有二、对数函数   (切记真数大于零,注意定义域) (一)对数说明: 注意底数的限,且  注意对数的书写格式两个重要对数: 常用对数:以10为底的对 自然对数:以无理为底的对数的对数(二)对数的运算性质如果,且,那么: ·    注意:换底公式 ,且,且).利用换底公式推导下面的结(P35,3/5/6/8/9;P36,3/4/6/8)(1);(2)(3)(注意:解对数指数方程不等式,或者比较大小都是化为同底数。若真数一样,利用换底公式(2);同时解对数方程时,要验根,是否真数大于0)(二)对数函数(区别清楚定义域为R和值域为R,x2前面有参数时,别忘记讨论它与0的关系)1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+).注意: 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如 都不是对数函数,而只能称其为对数型函数. 对数函数对底数的限制,且2、对数函数的性质:a>10<a<1定义域x>0定义域x>0值域为R值域为R在R上递在R上递函数图象都过定点(1,0函数图象都过定点(1,0注意:对于y=loga g(x),若u=g(x)为二次函数,先画图,取x轴上半部的图像,再结合图像解题。(一定注意先求定义域,真数大于0)f(x)=          的图像要记住,若有f(a)=f(b),则a,b互为倒数。(三)幂函数(a=-1,1/2,2,3的图像必须掌握)(1)所有的幂函数在(0,+)都有定义并且图象都过点(1,1)(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.(p22,1)总结:幂函数在第一象限为减函数,则;为增函数,则幂函数为奇函数,则a为奇数,为偶函数则a为偶数(p22,9)                           第三章 函数的应即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法: (代数法)求方的实数根; (几何法)对于不能用求根公式的方程,可以将它与函的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:  二次函(1)根的分布:画图!!看四点、开口方向,,对称轴,端点值的符号。(注意隐含条件和经过的定点没有隐含条件时,切记每一个都要考虑。(2)两个正根,两个复根,一正一负根时一般用维达定理.(除了一正一负隐含了德塔大于零,其他时候不要忘记德塔(3)若已知一个根,代入求出参数,再解方程,检验另外一根是否满足条件。

    相关试卷

    人教A版 (2019)5.3 诱导公式同步练习题:

    这是一份人教A版 (2019)5.3 诱导公式同步练习题,共5页。试卷主要包含了本节知识点讲解,三角函数的诱导公式,例题解析等内容,欢迎下载使用。

    人教版新课标A必修22.3 直线、平面垂直的判定及其性质当堂检测题:

    这是一份人教版新课标A必修22.3 直线、平面垂直的判定及其性质当堂检测题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    上教版(2020)必修 第一册5.1 函数练习题:

    这是一份上教版(2020)必修 第一册5.1 函数练习题,共5页。试卷主要包含了函数的表示方法,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map