- 2019年北京市高考数学试卷(文科)精编试卷答案解析 试卷 84 次下载
- 2019年北京市高考数学试卷(理科)精编试卷答案解析 试卷 86 次下载
- 2019年天津市高考数学试卷(理科)精编试卷答案解析 试卷 84 次下载
- 2019年江苏省高考数学精编试卷答案解析 试卷 90 次下载
- 2019年浙江省高考数学精编试卷答案解析 试卷 108 次下载
2019年天津市高考数学试卷(文科)精编答案解析
展开
绝密★启用前
2019年普通高等学校招生全国统一考试(天津卷)
数 学(文史类)
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利
第Ⅰ卷
注意事项:
1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分共40分。
参考公式:
·如果事件A,B互斥,那么.
·圆柱的体积公式,其中表示圆柱的底面面积,表示圆柱的高
·棱锥的体积公式,其中表示棱锥的底面面积,表示棱锥的高
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合, , ,则
A. {2} B. {2,3} C. {-1,2,3} D. {1,2,3,4}
【答案】D
【解析】
【分析】
先求,再求.
【详解】因为,
所以.
故选D.
【点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.
2. 设变量满足约束条件,则目标函数的最大值为
A. 2 B. 3 C. 5 D. 6
【答案】C
【解析】
【分析】
画出可行域,用截距模型求最值.
【详解】已知不等式组表示的平面区域如图中的阴影部分.
目标函数几何意义是直线在轴上的截距,
故目标函数点处取得最大值.
由,得,
所以.
故选C.
【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域,分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值或范围.即:一画,二移,三求.
3. 设,则“”是“”的
A. 充分而不必要条件
B. 必要而不充分条件
C. 充要条件
D. 既不充分也不必要条件
【答案】B
【解析】
【分析】
求出的解集,根据两解集的包含关系确定.
【详解】等价于,故推不出;
由能推出.
故“”是“”的必要不充分条件.
故选B.
【点睛】充要条件的三种判断方法:
(1)定义法:根据p⇒q,q⇒p进行判断;
(2)集合法:根据由p,q成立的对象构成的集合之间的包含关系进行判断;
(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题.
4. 阅读下边的程序框图,运行相应的程序,输出的值为
A. 5 B. 8 C. 24 D. 29
【答案】B
【解析】
【分析】
根据程序框图,逐步写出运算结果.
【详解】,,
结束循环,故输出.
故选B.
【点睛】解答本题要注意要明确循环体终止的条件是什么,会判断什么时候终止循环体.
5. 已知,,,则的大小关系为
A B.
C. D.
【答案】A
【解析】
【分析】
利用利用等中间值区分各个数值的大小.
【详解】;
;
.
故.
故选A.
【点睛】利用指数函数、对数函数的单调性时要根据底数与的大小区别对待.
6. 已知抛物线的焦点为,准线为.若与双曲线的两条渐近线分别交于点A和点B,且(为原点),则双曲线的离心率为
A. B. C. 2 D.
【答案】D
【解析】
【分析】
只需把用表示出来,即可根据双曲线离心率的定义求得离心率.
【详解】抛物线的准线的方程为,
双曲线的渐近线方程为,
则有
∴,,,
∴.
故选D.
【点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出AB的长度.
7. 已知函数是奇函数,将的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为.若的最小正周期为,且,则( )
A. B. C. D.
【答案】C
【解析】
【分析】
只需根据函数性质逐步得出值即可.
【详解】因为为奇函数,∴;
又
,,又
∴,
故选C.
【点睛】本题考查函数的性质和函数的求值问题,解题关键是求出函数.
8. 已知函数若关于的方程恰有两个互异的实数解,则的取值范围为
A. B. C. D.
【答案】D
【解析】
【分析】
画出图象及直线,借助图象分析.
【详解】如图,当直线位于点及其上方且位于点及其下方,
或者直线与曲线相切在第一象限时符合要求.
即,即,
或者,得,,即,得,
所以的取值范围是.
故选D.
【点睛】根据方程实根个数确定参数范围,常把其转化为曲线交点个数,特别是其中一条为直线时常用此法.
绝密★启用前
第Ⅱ卷
注意事项:
1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2.本卷共12小题,共110分。
二、填空题:本大题共6小题,每小题5分,共30分。
9. 是虚数单位,则的值为__________.
【答案】
【解析】
【分析】
先化简复数,再利用复数模的定义求所给复数的模.
【详解】.
【点睛】本题考查了复数模的运算,是基础题.
10. 设,使不等式成立的的取值范围为__________.
【答案】
【解析】
【分析】
通过因式分解,解不等式.
【详解】,
即,
即,
故的取值范围是.
【点睛】解一元二次不等式的步骤:(1)将二次项系数化为正数;(2)解相应的一元二次方程;(3)根据一元二次方程的根,结合不等号的方向画图;(4)写出不等式的解集.容易出现的错误有:①未将二次项系数化正,对应错标准形式;②解方程出错;③结果未按要求写成集合.
11. 曲线在点处的切线方程为__________.
【答案】
【解析】
【分析】
利用导数值确定切线斜率,再用点斜式写出切线方程.
【详解】,
当时其值为,
故所求的切线方程为,即.
【点睛】曲线切线方程的求法:
(1)以曲线上的点(x0,f(x0))为切点的切线方程的求解步骤:
①求出函数f(x)的导数f′(x);
②求切线的斜率f′(x0);
③写出切线方程y-f(x0)=f′(x0)(x-x0),并化简.
(2)如果已知点(x1,y1)不在曲线上,则设出切点(x0,y0),解方程组得切点(x0,y0),进而确定切线方程.
12. 已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.
【答案】.
【解析】
【分析】
根据棱锥的结构特点,确定所求的圆柱的高和底面半径.
【详解】由题意四棱锥的底面是边长为的正方形,侧棱长均为,借助勾股定理,可知四棱锥的高为,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为,一个底面的圆心为四棱锥底面的中心,故圆柱的高为,故圆柱的体积为.
【点睛】本题主要考查了圆柱与四棱锥的组合,考查了空间想象力,属于基础题.
13. 设,,,则的最小值为__________.
【答案】.
【解析】
【分析】
把分子展开化为,再利用基本不等式求最值.
详解】由,得,得
,
等号当且仅当,即时成立.
故所求的最小值为.
【点睛】使用基本不等式求最值时一定要验证等号否能够成立.
14. 在四边形中,, , , ,点在线段的延长线上,且,则__________.
【答案】.
【解析】
【分析】
建立坐标系利用向量的坐标运算分别写出向量而求解.
【详解】建立如图所示的直角坐标系,则,.
因为∥,,所以,
因为,所以,
所以直线的斜率为,其方程为,
直线的斜率为,其方程为.
由得,,
所以.
所以.
【点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便.
三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.
15. 2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取人调查专项附加扣除的享受情况.
(Ⅰ)应从老、中、青员工中分别抽取多少人?
(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为.享受情况如下表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
员工 项目 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
继续教育 | × | × | ○ | × | ○ | ○ |
大病医疗 | × | × | × | ○ | × | × |
住房贷款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
赡养老人 | ○ | ○ | × | × | × | ○ |
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率.
【答案】(I)6人,9人,10人;
(II)(i)见解析;(ii).
【解析】
【分析】
(I)根据题中所给的老、中、青员工人数,求得人数比,利用分层抽样要求每个个体被抽到的概率是相等的,结合样本容量求得结果;
(II)(I)根据6人中随机抽取2人,将所有的结果一一列出;
(ii)根据题意,找出满足条件的基本事件,利用公式求得概率.
【详解】(I)由已知,老、中、青员工人数之比为,
由于采取分层抽样的方法从中抽取25位员工,
因此应从老、中、青员工中分别抽取6人,9人,10人.
(II)(i)从已知的6人中随机抽取2人的所有可能结果为
,,,,共15种;
(ii)由表格知,符合题意的所有可能结果为,,,,共11种,
所以,事件M发生的概率.
【点睛】本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型即其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.
16. 在中,内角所对的边分别为.已知,.
(Ⅰ)求的值;
(Ⅱ)求的值.
【答案】(Ⅰ) ;
(Ⅱ) .
【解析】
【分析】
(Ⅰ)由题意结合正弦定理得到的比例关系,然后利用余弦定理可得的值
(Ⅱ)利用二倍角公式首先求得的值,然后利用两角和的正弦公式可得的值.
【详解】(Ⅰ)在中,由正弦定理得,
又由,得,即.
又因为,得到,.
由余弦定理可得.
(Ⅱ)由(Ⅰ)可得,
从而,.
故.
【点睛】本题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查计算求解能力.
17. 如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,,
(Ⅰ)设分别为的中点,求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)求直线与平面所成角的正弦值.
【答案】(I)见解析;(II)见解析;(III).
【解析】
【分析】
(I)连接,结合平行四边形的性质,以及三角形中位线的性质,得到,利用线面平行的判定定理证得结果;
(II)取棱的中点,连接,依题意,得,结合面面垂直的性质以及线面垂直的性质得到,利用线面垂直的判定定理证得结果;
(III)利用线面角的平面角的定义得到为直线与平面所成的角,放在直角三角形中求得结果.
【详解】(I)证明:连接,易知,,
又由,故,
又因为平面,平面,
所以平面.
(II)证明:取棱的中点,连接,
依题意,得,
又因为平面平面,平面平面,
所以平面,又平面,故,
又已知,,
所以平面.
(III)解:连接,
由(II)中平面,
可知为直线与平面所成的角.
因为为等边三角形,且为的中点,
所以,又,
在中,,
所以,直线与平面所成角的正弦值为.
【点睛】本小题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识,考查空间想象能力和推理能力.
18. 设是等差数列,是等比数列,公比大于,已知, ,.
(Ⅰ)求和的通项公式;
(Ⅱ)设数列满足求.
【答案】(I),;
(II)
【解析】
【分析】
(I)首先设出等差数列的公差,等比数列的公比,根据题意,列出方程组,求得,进而求得等差数列和等比数列的通项公式;
(II)根据题中所给的所满足的条件,将表示出来,之后应用分组求和法,结合等差数列的求和公式,以及错位相减法求和,最后求得结果.
【详解】(I)解:设等差数列的公差为,等比数列的公比为,
依题意,得,解得,
故,,
所以,的通项公式为,的通项公式为;
(II)
,
记 ①
则 ②
②①得,,
所以
.
【点睛】本小题主要考查等差数列、等比数列的通项公式及前项和公式等基础知识,考查数列求和的基本方法和运算求解能力,属于中档题目.
19. 设椭圆的左焦点为,左顶点为,上顶点为B.已知(为原点).
(Ⅰ)求椭圆的离心率;
(Ⅱ)设经过点且斜率为的直线与椭圆在轴上方的交点为,圆同时与轴和直线相切,圆心在直线上,且,求椭圆的方程.
【答案】(I);(II).
【解析】
【分析】
(I)根据题意得到,结合椭圆中的关系,得到,化简得出,从而求得其离心率;
(II)结合(I)的结论,设出椭圆的方程,写出直线的方程,两个方程联立,求得交点的坐标,利用直线与圆相切的条件,列出等量关系式,求得,从而得到椭圆的方程.
【详解】(I)解:设椭圆的半焦距为,由已知有,
又由,消去得,解得,
所以,椭圆的离心率为.
(II)解:由(I)知,,故椭圆方程为,
由题意,,则直线的方程为,
点的坐标满足,消去并化简,得到,
解得,
代入到的方程,解得,
因为点在轴的上方,所以,
由圆心在直线上,可设,因为,
且由(I)知,故,解得,
因为圆与轴相切,所以圆的半径为2,
又由圆与相切,得,解得,
所以椭圆的方程为:.
【点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.
20. 设函数,其中.
(Ⅰ)若,讨论的单调性;
(Ⅱ)若,
(i)证明恰有两个零点
(ii)设为的极值点,为的零点,且,证明.
【答案】(I)在内单调递增.;
(II)(i)见解析;(ii)见解析.
【解析】
【分析】
(I);首先写出函数的定义域,对函数求导,判断导数在对应区间上的符号,从而得到结果;
(II)(i)对函数求导,确定函数的单调性,求得极值的符号,从而确定出函数的零点个数,得到结果;
(ii)首先根据题意,列出方程组,借助于中介函数,证得结果.
【详解】(I)解:由已知,的定义域为,
且,
因此当时,,从而,
所以在内单调递增.
(II)证明:(i)由(I)知,,
令,由,可知在内单调递减,
又,且,
故在内有唯一解,
从而在内有唯一解,不妨设为,
则,当时,,
所以在内单调递增;
当时,,
所以在内单调递减,
因此是的唯一极值点.
令,则当时,,故在内单调递减,
从而当时,,所以,
从而,
又因为,所以在内有唯一零点,
又在内有唯一零点1,从而,在内恰有两个零点.
(ii)由题意,,即,
从而,即,
因为当时,,又,故,
两边取对数,得,
于是,整理得,
【点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法,考查函数思想、化归与转化思想,考查综合分析问题和解决问题的能力.
2019年北京市高考数学试卷(文科)精编答案解析: 这是一份2019年北京市高考数学试卷(文科)精编答案解析,文件包含2019年北京市高考数学试卷文科精编原卷doc、2019年北京市高考数学试卷文科精编答案解析doc等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
2019年高考数学试卷(文科)(新课标3)精编答案解析: 这是一份2019年高考数学试卷(文科)(新课标3)精编答案解析,文件包含2019年高考数学试卷文科新课标3精编原卷doc、2019年高考数学试卷文科新课标3精编答案解析doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
2019年高考数学试卷(文科)(新课标2)精编答案解析: 这是一份2019年高考数学试卷(文科)(新课标2)精编答案解析,文件包含2019年高考数学试卷文科新课标2精编原卷doc、2019年高考数学试卷文科新课标2精编答案解析doc等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。