专题38 数列中的通项公式-2021年高考数学微专题复习练习(新高考地区专用)
展开一、题型选讲
题型一 、由的关系求通项公式
例1、(2020届山东省烟台市高三上期末)已知数列的前项和满足,且.
求数列的通项公式;
例2、(2020届山东省枣庄、滕州市高三上期末)已知等比数列满足成等差数列,且;等差数列的前n项和.求:
(1);
例3、(2020届山东省德州市高三上期末)已知数列的前项和为,且,.求数列的通项公式;
题型二、由的递推关系求通项公式
例3、【2019年高考全国II卷理数】已知数列{an}和{bn}满足a1=1,b1=0,,.
(1)证明:{an+bn}是等比数列,{an–bn}是等差数列;
(2)求{an}和{bn}的通项公式.
例4、(2020届山东省德州市高三上期末)对于数列,规定为数列的一阶差分数列,其中,对自然数,规定为数列的阶差分数列,其中.若,且,则数列的通项公式为( )
A.B.
C.D.
例5、【2019年高考天津卷理数】设是等差数列,是等比数列.已知.
(Ⅰ)求和的通项公式;
(Ⅱ)设数列满足其中.
(i)求数列的通项公式;
题型三、新定义题型中通项公式的求法
例6、【2020年高考江苏】已知数列的首项a1=1,前n项和为Sn.设λ与k是常数,若对一切正整数n,均有成立,则称此数列为“λ~k”数列.
(1)若等差数列是“λ~1”数列,求λ的值;
(2)若数列是“”数列,且,求数列的通项公式;
例7、【2019年高考北京卷理数】已知数列{an},从中选取第i1项、第i2项、…、第im项(i1
(2)已知数列{an}的长度为p的递增子列的末项的最小值为,长度为q的递增子列的末项的最小值为.若p
(3)设无穷数列{an}的各项均为正整数,且任意两项均不相等.若{an}的长度为s的递增子列末项的最小值为2s–1,且长度为s末项为2s–1的递增子列恰有2s-1个(s=1,2,…),求数列{an}的通项公式.
二、达标训练
1、(2020届浙江省温州市高三4月二模)已知数列满足:)若正整数使得成立,则( )
A.16B.17C.18D.19
2、(2020届山东省潍坊市高三上学期统考)设数列的前项和为,且,在正项等比数列中,. 求和的通项公式;
3、(2020届山东省日照市高三上期末联考)已知数列满足:.
(1)证明数列是等比数列,并求数列的通项;
4、(2020·山东省淄博实验中学高三上期末)已知数列的各项均为正数,对任意,它的前项和满足,并且,,成等比数列.求数列的通项公式;
5、(2020届山东师范大学附中高三月考)设等差数列前项和为,满足,.
(1)求数列的通项公式;
(2)设数列满足,求数列的通项公式
6、(2020·浙江温州中学3月高考模拟)已知各项均为正数的数列的前项和为,且,(,且)求数列的通项公式;
7、【2019年高考浙江卷】设等差数列的前n项和为,,,数列满足:对每个成等比数列.
(1)求数列的通项公式;
8、【2019年高考江苏卷】定义首项为1且公比为正数的等比数列为“M-数列”.
(1)已知等比数列{an}满足:,求证:数列{an}为“M-数列”;
(2)已知数列{bn}满足:,其中Sn为数列{bn}的前n项和.
①求数列{bn}的通项公式;
第37讲 等比数列的前n项和 第38讲 数列通项公式题型全归纳-2023届高考数学二轮复习经典结论微专题: 这是一份第37讲 等比数列的前n项和 第38讲 数列通项公式题型全归纳-2023届高考数学二轮复习经典结论微专题,文件包含第37讲等比数列的前n项和与第38讲数列通项公式题型全归纳-解析版docx、第37讲等比数列的前n项和与第38讲数列通项公式题型全归纳-原卷版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
2022高考数学一轮复习专题38 数列中的通项公式(原卷): 这是一份2022高考数学一轮复习专题38 数列中的通项公式(原卷),共5页。试卷主要包含了题型选讲,由的递推关系求通项公式,新定义题型中通项公式的求法等内容,欢迎下载使用。
2022高考数学一轮复习专题38 数列中的通项公式(解析卷): 这是一份2022高考数学一轮复习专题38 数列中的通项公式(解析卷),共10页。试卷主要包含了题型选讲,由的递推关系求通项公式,新定义题型中通项公式的求法等内容,欢迎下载使用。