数学九年级下册1 用树形图或表格求概率精品表格练习
展开鲁教版九年级下册6.1用树状图或表格求概率同步课时训练
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.如图,A,B两个转盘分别被平均分成三个,四个扇形,分别转动A盘,B盘各一次,转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在区域为止,两个转盘停止后指针所指区域内的数字之和小于6的概率是( )
A. B. C. D.
2.有四根长度分别为、、、的木棒,从中任取三根,并将它们首尾相连,能组成三角形的概率为( )
A. B. C. D.
3.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出两个小球,则摸出的两个小球标号之和大于4的概率是( )
A. B. C. D.
4.在1,2,3三个数中任取两个组成一个两位数,则组成的两位数大于15的概率为( )
A. B. C. D.
5.在数-1,1,2中任取两个数作为点的坐标,该点刚好在二次函数图象上的概率是( )
A. B. C. D.
6.先后随机抛掷一枚质地均匀的正方体骰子两次,第一次掷出的点数记为,第二次掷出的点数记为,则使关于的一元二次方程有实数解的概率为( )
A. B. C. D.
7.某商场在“双十一”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是( )
A. B.
C. D.
8.随机从二男一女三名学生的学号中抽取两个人的学号,被抽中的两人性别不同的概率为( )
A. B. C. D.
9.如图,随机闭合开关中的两个,能让灯泡发光的概率是( )
A. B. C. D.
10.如图是一次数学活动课上制作的两个转盘,甲转盘被平均分为三部分,上面分别写着9,8,5三个数字,乙转盘被平均分为四部分,上面分别写着1,6,9,8四个数字,同时转动两个转盘,停止转动后两个转盘上指针所指的数字恰好都能被3整除的概率是( ).
A. B. C. D.
二、填空题
11.已知a,b取,,1中的任意一个值,则直线经过第二象限的概率是________.
12.四张背面相同的卡片,分别为,1,2,3,洗匀后背面朝上,先从中抽取一张,把抽到的点数记为a,再在剩余的卡片中抽取一张点数记为b,则点(a,b)恰好落在一次函数y=-2x+4与坐标轴所围成的三角形区域内(含边界)的概率为______________;
13.现有四张分别标有数字-5、-2、1、2的卡片,它们除数字不同外其余完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a,放回后从卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线y=2x-1的概率为___________.
14.在一个不透明口袋有四个完全相同的小球,把它们分别标号为,,,.随机摸出一个球后不放回,再随机摸出一个,则两次摸出的小球标号之和为的概率为__________.
15.在长度分别为3、4、7、9的四条线段中,任意选取三条,端点顺次连接,能组成三角形的概率为______.
16.疫情防控期间,各学校严格落实测体温进校园的防控要求,某学校开设了,,三个测温通道.某天早晨,小明和小红两位同学随机通过测温通道进入校园,则小明和小红从同一通道进入校园的概率为______.
三、解答题
17.有甲、乙、丙三张完全相同的卡片,小明在其正面各写上一个方程,如图,然后将这三张卡片背面朝上洗匀.
(1)从中随机抽取一张,求抽到方程没有实数根的概率;
(2)从中随机抽取一张,记下方程后放回,再随机抽取一张,请用列表或面树状图的方法,求抽到的方程都有实数根的概率.
18.河口瑶族自治县位于红河哈尼族彝族自治州东南部,隔红河与越南老街市、谷柳市相望,是云南唯一一个以瑶族为主体的自治县.瑶族人民的粽粑是当地一种美味的特色小吃,包粽粑是瑶族传统的“盘王节”(农历十月十六)活动之一.盘王节那天,小盘同学回家看到桌子上有一盘粽粑,其中花生仁、紫苏仁各1,豆沙仁2个,这些粽粑除陷外,其它无差别.
(1)小盘随机地从盘子中取一个粽粑,求取出的是花生仁的概率;
(2)小盘随机地从盘子中取出两个粽粑,请用列表法或画树状图法表示所有可能的结果,并求出小盘取出的两个粽粑都是豆沙粽粑的概率.
19.2020年疫情期间,某校为学生提供四种在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了解学生的需求,对学生进行了“你最喜欢哪种在线学习方式的调查,调查结果制成两幅不完整统计图如图,根据图中信息回答问题:
(1)本次调查人数有 人,在线答疑所在扇形的圆心角度数是 ;
(2)补全条形统计图;
(3)甲、乙两位同学都参加了在线学习,请用画树状图或列表的方法求出两名同学喜欢同一种在线学习方式的概率.
20.2020年3月,中共中央、国务院印发了《关于全面加强新时代大中小学劳动教育的意见》(以下简称中央《意见》),就加强大中小学劳动教育进行了系统设计和全面部署.2020年11月,中共云南省委、云南省人民政府全面对照落实中央《意见》精神,结合云南实际,印发了《关于全面加强新时代大中小学劳动教育的实施意见》(以下简称《实施意见》),《实施意见》要求各地各校组织学生广泛开展劳动教育实践活动.昆明甲、乙两校想从下面四个劳动实践基地中任选一个,地点如下:
A:澄江抚仙湖仙湖农场劳动实践教育基地;
B:富民半山耕云劳动实践教育基地;
C:石林杏林大观园中医药文化研学实践教育基地;
D:石林锦苑花卉鲜花种植劳动实践教育基地.
(1)求甲校选择到澄江抚仙湖仙湖农场劳动实践教育基地的概率;
(2)甲、乙两校决定通过抽签的方式确定本次开展劳动教育实践活动的目的地,请你用树状图或列表的方法求出两所学校到同一地点开展劳动教育实践活动的概率.
参考答案
1.A
2.C
3.D
4.A
5.B
6.B
7.A
8.C
9.C
10.D
11.
12.
13..
14.
15.
16.
17.(1);(2).
【详解】
解:(1)方程有实数根,则>
甲方程:
∴甲方程没有实数根;
乙方程:
∴乙方程有实数根
丙方程:
∴丙方程有实数根
所以,抽到方程没有实数根的概率;
(2)画树状图:
共有9种等可能的结果,其中恰好抽到两个方程都有实数根的结果数为4,
所以恰好抽到两个方程都有实数根的概率=.
18.(1);(2).
【详解】
解:(1)共有4个等可能结果,其中花生仁有1个
∴(小盘从中随机地从盘子中取一个粽粑,取出的是花生仁).
(2)由题意可得:
| 花生 | 紫苏 | 豆沙1 | 豆沙2 |
花生 |
| (花生,紫苏) | (花生,豆沙1) | (花生,豆沙2) |
紫苏 | (紫苏,花生) |
| (紫苏,豆沙1) | (紫苏,豆沙2) |
豆沙1 | (豆沙1,花生) | (豆沙1,紫苏) |
| (豆沙1,豆沙2) |
豆沙2 | (豆沙2,花生) | (豆沙2,紫苏) | (豆沙2,豆沙1) |
|
共有12种等可能结果,其中两个都是粽粑的等可能结果共2种结果,
∴(小盘取出的两个粽粑都是豆沙粽粑).
19.(1)100,72°;(2)见解析;(3).
【详解】
解:(1)25÷25%=100(人),即本次调查人数有100人,
“在线答疑”的人数为100-40-25-15=20(人),在扇形图中的圆心角度数为360°× =72°;
故答案为:100,72°;
(2)补全条形统计图如图所示:
(3)四类在线学习方式在线阅读、在线听课、在线答疑、在线讨论分别用A、B、C、D表示,画树状图如图:
共有16个等可能的结果,其中甲、乙两名同学喜欢同一种在线学习方式的结果有4个,
∴甲、乙两名同学喜欢同一种在线学习方式的概率为.
【详解】
解:(1)因为从A、B、C、D中随机选一项,共有四种等可能结果,故恰好选中A的概率是
;
(2)列表分析如下:
甲校 乙校 | A | B | C | D |
A | ||||
B | ||||
C | ||||
D |
或画树状图如下:
∵共有16种等可能的结果,其中两所学校选择相同目的地有4种情况,
∴两所学校到同一地点开展劳动教育实践活动的概率:,
即P(两所学校到同一地点开展劳动教育实践活动).
鲁教版 (五四制)九年级下册1 用树形图或表格求概率表格达标测试: 这是一份鲁教版 (五四制)九年级下册1 用树形图或表格求概率表格达标测试,共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学鲁教版 (五四制)九年级下册3 垂径定理精品课后练习题: 这是一份初中数学鲁教版 (五四制)九年级下册3 垂径定理精品课后练习题,共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学鲁教版 (五四制)九年级下册1 圆优秀课后作业题: 这是一份初中数学鲁教版 (五四制)九年级下册1 圆优秀课后作业题,共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。