|试卷下载
搜索
    上传资料 赚现金
    专题22 数学文化(客观题)(新高考地区专用)(原卷版)
    立即下载
    加入资料篮
    专题22 数学文化(客观题)(新高考地区专用)(原卷版)01
    专题22 数学文化(客观题)(新高考地区专用)(原卷版)02
    专题22 数学文化(客观题)(新高考地区专用)(原卷版)03
    还剩14页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题22 数学文化(客观题)(新高考地区专用)(原卷版)

    展开
    这是一份专题22 数学文化(客观题)(新高考地区专用)(原卷版),共17页。试卷主要包含了单选题,多选题,填空题,双空题等内容,欢迎下载使用。

    专题22   数学文化(客观题)

    一、单选题

    1.自宋朝以来,折扇一直深受文人雅土的喜爱,在扇面(折扇由扇骨和扇面组成)上题字作画是生活高雅的象征现有一位折扇爱好者准备在如图所示的扇面上题字,由于突然停电,不慎将一滴墨汁落入折扇所在区域,则墨汁恰好落入扇面部分的概率为

    A  B

    C  D

    2.远古时期,人们通过在绳子上打结来记录数量,即结绳计数,就是现在我们熟悉的进位制,下图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满五进一,根据图示可知,孩子已经出生的天数是

    A  B

    C  D

    3.九连环是我国从古至今广泛流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:两环互相贯为一,得其关捩,解之为二,又合面为一.在某种玩法中,用an表示解下nn≤9nN*)个圆环所需的移动最少次数,若a11.且an,则解下5个环所需的最少移动次数为

    A7  B13

    C16  D22

    4.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.则下列说法不正确的是

    注:相差是指差的绝对值

    A.立春和立冬的晷长相同

    B.立夏和立秋的晷长相同

    C.与夏至的晷长相差最大的是冬至的晷长

    D.与春分的晷长相差最大的是秋分的晷长

    5年,欧拉在给哥德巴赫的一封信中列举了多面体的一些性质,其中一条如果用表示闭的凸多面体的顶点数、棱数和面数,则有如下关系:已知正十二面体有个顶点,则正十二面体有条棱

    A  B

    C  D

    6.《九章算术》是我国古代数学名著,也是古代东方数学的代表作书中有如下问题:今有勾八步,股十五步,问勾中容圆径几何?其意思已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径是多少?现若向此三角形内投豆子,则落在其内切圆内的概率是

    A  B

    C  D

    7.我国古代数学著作《九章算术》有如下问题:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,始与岸齐,问水深、葭长各几何?意思是说:有一个边长为丈的正方形水池,在池的正中央长着一根芦苇,芦苇露出水面尺.若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面.问水有多深?芦苇多长?该题所求的水深为

    A  B

    C  D

    8.我国南北朝时期的数学家祖暅提出了计算几何体体积的祖暅原理:幂势既同,则积不容异.意思是两个同高的几何体,如果在等高处的截面积都相等,那么这两个几何体的体积相等.现有某几何体和一个圆锥满足祖暅原理的条件,若该圆锥的侧面展开图是半径为3的圆的三分之一,则该几何体的体积为

    Aπ  Bπ

    C4  D

    92011年国际数学协会正式宣布将每年的314日设为国际数学节,来源则是中国古代数学家祖冲之的圆周率现用我国何承天发明调日法来得到的近似数,其原理是设实数的不足近似值和过剩近似值为,则是更为精确的不足近似值或过剩近似值若令,则第一次用调日法后得,它是的更为精确的不足近似值,即若每次都取得简分数,则第次用调日法后的近似值为,则的值为

    A2  B3

    C4  D5

    10.最早发现勾股定理的人是我国西周数学家商高,商高比毕达哥拉斯早500多年发现勾股定理,如图所示,满足勾三股四弦五,其中股为弦上一点(不含端点),且满足勾股定理,则

    A  B

    C  D

    11.饕餮(tāo t)纹,青铜器上常见的花纹之一,盛行于商代至西周早期,最早出现在距今五千年前长江下游地区的良渚文化玉器上有人将饕餮纹的一部分画到了方格纸上,如图所示,每个小方格的边长为,有一点点出发每次向右或向下跳一个单位长度,且向右或向下跳是等可能性的,那么它经过次跳动后恰好是沿着饕餮纹的路线到达点的概率为

    A  B

    C  D

    12.斗拱是中国古典建筑最富装饰性的构件之一,并为中国所持有,图一图二是北京故宫太和殿斗拱实物图,图三是斗拱构件之一的的几何体,本图中的斗是由棱台与长方体形凹槽(长方体去掉一个长相等,宽和高分别为原长方体一半的小长方体)组成若棱台两底面面积分别是,高为,长方体形凹槽的高为,斗的密度是那么这个斗的质量是

    A  B

    C  D

    13.我国南宋时期数学家秦九韶发现了求三角形面积的三斜求积公式:设内角ABC所对的边分别为abc,面积.若,则面积的最大值为

    A  B

    C  D

    14.我们将称为黄金分割数,亦可简称为黄金数,将离心率等于黄金数的倒数的双曲线叫做黄金双曲线,则

    A.黄金双曲线的虚轴是实轴与焦距的等比中项

    B.黄金双曲线的虚轴是实轴与焦距的等差中项

    C.黄金双曲线的焦距是实轴与虚轴的等比中项

    D.黄金双曲线的焦距是实轴与虚轴的等差中项

    15.算盘是中国传统的计算工具,是中国人在长期使用算筹的基础上发明的,是中国古代一项伟大的、重要的发明,在阿拉伯数字出现前是全世界广为使用的计算工具珠算一词最早见于东汉徐岳所撰的《数术记遗》,其中有云:珠算控带四时,经纬三才北周甄鸾为此作注,大意把木板刻为部分,上、下两部分是停游珠用的,中间一部分是作定位用的下图是一把算盘的初始状态,自右向左,分别是个位、十位、百位、,上面一粒珠(简称上珠)代表,下面一粒珠(简称下珠)是,即五粒下珠的大小等于同组一粒上珠的大小现在从个位和十位这两组中随机选择往下拨一粒上珠,往上拨粒下珠,算盘表示的数为质数(除了和本身没有其它的约数)的概率是

    A  B

    C  D

    16.《九章算术》中《方田》章有弧田面积计算问题,术日以弦乘矢,矢又自乘,并之二而一其大意是弧田面积计算公式弧田面积=(弦×+×矢),弧田是由圆弧(弧田弧)和以圆弧的端点为端点的线段(弧田弦)围成的平面图形,公式中的指的是弧田弦的长,指的是弧田所在圆的半径与圆心到孤田弧的距离之差,现有一弧田,其弧田弦AB等于6米,其狐田弧所在圆为圆O,若用上述弧田面积计算公式算得该弧田的面积为平方米,则cosAOB=

    A  B

    C  D

    17.数列称为斐波那契数列,是意大利著名数学家斐波那契于年在他撰写的《算盘全书》中提出的,该数列的特点从第三项起,每一项都等于它前面两项的和在该数列的前项中,偶数的个数为

    A  B

    C  D

    18.我国汉代数学家赵爽为了证明勾股定理,创制了一副弦图,后人称其为赵爽弦图下图是在赵爽弦图的基础上创作出的一个数学风车,其中正方形内部为赵爽弦图,它是由四个全等的直角三角形和一个小正方形组成的我们将图中阴影所在的四个三角形称为风叶,若从该数学风车的八个顶点中任取两点,则该两点取自同一片风叶的概率为

    A  B

    C  D

    19.将正整数12分解成两个正整数的乘积有三种,其中是这三种分解中两数差的绝对值最小的,我们称12的最佳分解(p)是正整数n的最佳分解时,我们定义函数,例如,则数列的前2020项和为

    A  B

    C  D

    20.《九章算术》中,将底面是直角三角形的直三棱柱称之为堑堵已知某堑堵的三视图如图所示,俯视图中间的实线平分矩形的面积,则该堑堵的侧面积为

    A B

    C D

    21.我国南宋数学家杨辉1261年所著的《详解九章算法》就给出了著名的杨辉三角,由此可见我国古代数学的成就是非常值得中华民族自豪的以下关于杨辉三角的猜想中错误的是

    A.由与首末两端等距离的两个二项式系数相等猜想:CnmCnnm

    B.由在相邻的两行中,除1以外的每一个数都等于它肩上两个数的和猜想:

    C.由n行所有数之和为2n猜想:Cn0Cn1Cn2Cnn2n

    D.由“111111121211131331”猜想:11515101051

    22.古希腊时期,人们把宽与长之比为的矩形称为黄金矩形,把这个比值称为黄金分割比例.下图为希腊的一古建筑其中部分廊、檐、顶的连接点为图中所示相关对应点,图中的矩形均近似为黄金矩间的距离大于187m间的距离小于12m.则该古建筑中间的距离可能是(参考数据:

    A29m  B298m

    C308m  D328m

    23.龙马负图、神龟载书图象如图甲所示,数千年来被认为是中华传统文化的源头;其中洛书有云,神龟出于洛水,甲壳上的图象如图乙所示,其结构是戴九履一,左三右七,二四为肩,六八为足u,以五居中,五方白圈皆阳数,四角黑点为阴数;若从阳数和阴数中分别随机抽出2个和1个,则被抽到的3个数的数字之和超过16的概率为(

    A  B

    C  D

    24.《张丘建算经》卷上第今有女善织,日益功疾(注:从第天开始,每天比前一天多织相同量的布),第一天织尺布,现一月(按天计)共织,则从第天起每天比前一天多织

    A尺布  B尺布

    C尺布  D尺布

    251715年英国数学家布鲁克·泰勒(Brook Taylor)在他的著作中陈述了泰勒公式,如果满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值构建一个多项式来近似表达这个函数.泰勒公式将一些复杂函数近似地表示为简单的多项式函数,使得它成为分析和研究许多数学问题的有力工具,例如:,其中.试用上述公式估计的近似值为(精确到0.001

    A1.647  B1.648

    C1.649  D1.650

    26.如图是隋唐天坛,古叫圜丘,它位于唐长安城明德门遗址东约950米,即今西安市雁塔区陕西师范大学以南.天坛初建于隋而废弃于唐末,比北京明清天坛早1000多年,是隋唐王朝近三百年里的皇家祭天之处.某数学兴趣小组为了测得天坛的直径,在天坛外围测得米,米,米,,据此可以估计天坛的最下面一层的直径大约为.(结果精确到1米)

    (参考数据:

    A39  B43

    C49  D53

    27.刘徽(约公元225-295),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一他在割圆术中提出的割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣,这可视为中国古代极限观念的佳作割圆术的核心思想是将一个圆的内接正边形等分成个等腰三角形(如图所示),当变得很大时,这个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想得到的近似值为

    A B

    C D

    28.古希腊的数学家毕达哥拉斯通过研究正五边形和正十边形的作图,发现了黄金分割率,黄金分割率的值也可以用表示若实数满足,则

    A  B

    C  D

    29.我国古代数学论著中有如下问题:远望巍巍塔七层,红光点点倍加增,共灯二百五十四,请问底层几盏灯?意思一座7层塔共挂了254盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的底层共有灯

    A32  B64

    C128  D196

    30.古代数学著作《九章算术》有如下问题:今有女子善织,日自倍,五日织五尺,问日织几何?意思一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?根据上题的已知条件,可求得该女子第2天所织布的尺数为

    A  B

    C  D

    31.南北朝时期的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:幂势既同,则积不容异其含义夹在两个平行平面之间的两个几何体,被平行于这两个平行平面的任意平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等如图,夹在两个平行平面之间的两个几何体的体积分别为,被平行于这两个平面的任意平面截得的两个截面面积分别为,则命题相等是命题总相等

    A.充分不必要条件 B.必要不充分条件

    C.充要条件 D.既不充分也不必要条件

    32.十九世纪下半叶集合论的创立,莫定了现代数学的基础著名的康托三分集是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间均分为三段,去掉中间的区间段,记为第一次操作;再将剩下的两个区间分别均分为三段,并各自去掉中间的区间段,记为第二次操作;,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段操作过程不断地进行下去,以至无穷,剩下的区间集合即是康托三分集若使去掉的各区间长度之和不小于,则需要操作的次数的最小值为参考数据:

    A3  B4

    C5  D6

    33.我国古代著名数学家刘徽的杰作《九章算术注》是中国最宝贵的数学遗产之一,书中记载了他计算圆周率所用的方法.先作一个半径为1的单位圆,然后做其内接正六边形,在此基础上做出内接正边形,这样正多边形的边逐渐逼近圆周,从而得到圆周率,这种方法称为刘徽割圆术.现设单位圆的内接正边形的一边为,点为劣弧的中点,则是内接正边形的一边,现记,则

    A B

    C D

    34.德国著名的天文学家开普勒说过:几何学里有两件宝,一个是勾股定理,另一个是黄金分割如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为的等腰三角形(另一种是顶角为的等腰三角形)例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金中,根据这些信息,可得

    A  B

    C  D

    35.蹴鞠,又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球因而蹴鞠就是指古人以脚蹴,蹋、踢皮球的活动,类似今日的足球2006520日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录打印属于快速成形技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠累积的方式来构造物体的技术(即积层造型法过去常在模具制造、工业设计等领域被用于制造模型,现正用于一些产品的直接制造,特别是一些高价值应用(比如髋关节、牙齿或一些飞机零部件等)已知某鞠的表面上有四个点,满足任意两点间的直线距离为,现在利用打印技术制作模型,该模型是由鞠的内部挖去由组成的几何体后剩余的部分,打印所用原料密度为,不考虑打印损耗,制作该模型所需原料的质量约为(参考数据:取,精确到0.1

    A  B

    C  D

    36.《孙子算经》记载,中国古代诸侯的等级从低到高分男、子、伯、侯、公,一共五级现每个级别的诸侯分别有12345人,按照如下规则给他们分发一批苹果:同一等级的诸侯所得苹果数依次为,且满足;任一等级诸侯所得苹果数量最多的比高一级的诸侯所得苹果数最少的少一个.现已知等级为男的诸侯所得苹果数为1,则这批苹果共有    个.

    A158  B159

    C160  D161

    37.黎曼函数是一个特殊的函数,由德国著名的数学家波恩哈德·黎曼发现提出,在高等数学中有着广泛的应用其定义黎曼函数为正整数,是既约真分数)时,当上的无理数时已知都是区间内的实数,则下列不等式一定正确的是

    A B

    C D

    38.我国古代著名的数学专著《九章算术》里有一段叙述:今有良马和驽马发长安至齐,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,九日后二马相逢问:齐去长安多少里?

    A  B

    C  D

    39.将一条均匀柔软的链条两端固定,在重力的作用下它所呈现的形状叫悬链线,例如悬索桥等建立适当的直角坐标系,可以写出悬链线的函数解析式为,其中为悬链线系数,称为双曲余弦函数,其函数表达式为,相应地双曲正弦函数的函数表达式为若直线与双曲余弦函数和双曲正弦函数分别相交于点,曲线在点处的切线与曲线在点处的切线相交于点,则

    A是偶函数

    B

    C的增大而减小

    D的面积随的增大而减小

    40.我国古代数学家秦九韶在《数书九章》中记述了三斜求积术,即在中,角ABC所对的边分别为abc,则的面积根据此公式,若,且,则的面积为

    A  B

    C  D

    二、多选题

    1.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远若实数,则下列不等式不一定成立的是

    A  B

    C≥2  D

    2.瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上这条直线被后人称为三角形的欧拉线在平面直角坐标系中作ABCABAC4,点B(13),点C(4,-2),且其欧拉线与圆M相切,则下列结论正确的是

    A.圆M上点到直线的最小距离为2

    B.圆M上点到直线的最大距离为3

    C.若点(xy)在圆M上,则的最小值是

    D.圆与圆M有公共点,则a的取值范围是

    3.一般地,若函数的定义域为,值域为,则称为的倍跟随区间;若函数的定义域为,值域也为,则称跟随区间下列结论正确的是

    A.若的跟随区间,则

    B.函数存在跟随区间

    C.若函数存在跟随区间,则

    D.二次函数存在“3倍跟随区间

    三、填空题

    1.《九章算术》中,将四个面都为直角三角形的四面体称为鱉臑如图,四面体为鱉臑,平面为直角,且,则的体积为________

    2.法国数学家拉格朗日于1778年在其著作《解析函数论》中提出一个定理:如果函数满足如下条件:

    1)在闭区间上是连续不断的;

    2)在区间上都有导数.

    则在区间上至少存在一个数,使得,其中称为拉格朗日中值.则在区间上的拉格朗日中值________

    3.《九章算术》是我国古代的一部数学书记,通过牟合方盖解决了球体体积计算的难题,其中一段记载:今有方锥,下方八尺,高八尺,问:积几何?术曰:下方自乘,以高乘之,三而一,若以立圆外接,问积几何?意思假设有一个正四棱锥(底面是正方形,并且顶点在底面的射影是正方形中心的四棱锥),下底边长是8尺,高8尺,则它的体积是多少?方法下底边长自乘,以高乘之,再除以3若这个正四棱锥的所有顶点都在球的球面上,则球的体积是__________立方尺

    4.中国有悠久的金石文化,印信是金石文化的代表之一印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是半正多面体(图1半正多面体是由两种或两种以上的正多边形围成的多面体半正多面体体现了数学的对称美2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1则该半正多面体的棱长为____________

    5.世界四大历史博物馆之首卢浮宫博物馆始建于年,原是法国的王宫,是法国文艺复兴时期最珍贵的建筑物之一,以收藏丰富的古典绘画和雕刻而闻名于世,卢浮宫玻璃金字塔为正四棱锥,且该正四棱锥的高为米,底面边长为米,是华人建筑大师贝聿铭设计的若玻璃金字塔五个顶点恰好在一个球面上,则该球的半径为____________

    6.蜂巢是由工蜂分泌蜂蜡建成的从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成,菱形的一个角度是,这样的设计含有深刻的数学原理、我国著名数学家华罗庚曾专门研究蜂巢的结构著有《谈谈与蜂房结构有关的数学问题》.用数学的眼光去看蜂巢的结构,如图,在正六棱柱的三个顶点处分别用平面,平面,平面截掉三个相等的三棱锥,平面,平面,平面交于点,就形成了蜂巢的结构.

    如图,设平面与正六边形底面所成的二面角的大小为,则____________(用含的代数式表示)

    四、双空题

    1.我国魏晋时期的科学家刘徽创立了割圆术,实施以直代曲的近似计算,用正边形进行内外夹逼的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一.借用以直代曲的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算 ,则曲线在点处的切线方程为____________,用此结论计算____________

    2.古代的商人在堆放物品时,为了节约空间,常把物品垒成许多层,俗称,每层摆成三角形的就叫做三角垛.在一个三角垛中,自上而下的第一层摆放1个,第二层摆放个,第三层摆放个,以此类推.13世纪,我国数学家杨辉在《详解九章算法》中介绍了计算三角垛物体总个数的方法:记三角垛的层数为三角垛的物体总数为,则.由上述材料可知层数为9三角垛的第四层物体数为____________,物体总数为____________

    3.在复变函数中,自变量可以写成,其中z的辐角.点绕原点逆时针旋转θ后的位置可利用复数推导,点绕原点逆时针旋转____________.;复变函数____________

    相关试卷

    专题19 椭圆(客观题)(新高考地区专用)(原卷版): 这是一份专题19 椭圆(客观题)(新高考地区专用)(原卷版),共12页。试卷主要包含了单选题,多选题,填空题,双空题等内容,欢迎下载使用。

    专题16 数列(客观题)(新高考地区专用)(原卷版): 这是一份专题16 数列(客观题)(新高考地区专用)(原卷版),共13页。试卷主要包含了单选题,多选题,填空题,双空题等内容,欢迎下载使用。

    专题02 复数(客观题)(新高考地区专用)(原卷版): 这是一份专题02 复数(客观题)(新高考地区专用)(原卷版),共9页。试卷主要包含了单选题,多选题,填空题,双空题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map