专题16 极坐标与参数方程-2021年高考冲刺之二轮专题精讲精析
展开专题16极坐标与参数方程
1.在平面直角坐标系中,直线.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)若与相交于,两点,且,求.
2.在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)求上的点到距离的最大值.
3.在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程与曲线的直角坐标方程;
(2)已知点的直角坐标为,过点作直线的垂线交曲线于、两点(在轴上方),求的值.
4.在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)若与相交于,两点,设,求.
5.在极坐标系中,已知点,B(1,π),C(1,0).
(1)求A,B,C三点的直角坐标;
(2)已知M是△ABC外接圆上的任意一点,求|MA|2+|MB|2+|MC|2的值.
6.在平面直角坐标系xOy中,已知直线l过点且倾斜角为60°,曲线C的参数方程为(为参数).
(1)以原点为极点,x轴非负半轴为极轴且取相同的单位长度建立极坐标系,求曲线C的极坐标方程;
(2)求直线l被曲线C所截得的线段的长度.
7.如图所示,已知曲线的极坐标方程为,点,以极点为原点,极轴为轴建立平面直角坐标系.
(1)求曲线的直角坐标方程;
(2)已知直线的参数方程为,(为参数),若直线与曲线交于、两点,求的值.
8.已知曲线的极坐标方程为,以极点为坐标原点,极轴为轴的正半轴,建立直角坐标系,点为曲线上的动点,点在轴上的射影为点,且满足.
(1)求动点的轨迹的方程;
(2)直线的极坐标方程为,点为直线上的动点,求的最小值.
9.在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线:.
(1)求曲线的直角坐标方程;
(2)若点,且和的交点分别为点,,求的取值范围.
10.在平面直角坐标系中,曲线的直角坐标方程为,以为极点,轴非负半轴为极轴,建立极坐标系,直线的极坐标系方程为.
(1)求曲线的极坐标方程;
(2)判断:直线与曲线是否相交?若相交,请求出公共弦的长;若不相交,请说明理由.
11.在极坐标系中,已知直线过点,且其向上的方向与极轴的正方向所成的最小正角为,求:
(1)直线的极坐标方程;
(2)极点到该直线的距离.
12.在平面直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)设,直线与曲线相交于M,N两点,若,,成等比数列,求实数的值.
专题11 圆锥曲线-2021年高考冲刺之二轮专题精讲精析: 这是一份专题11 圆锥曲线-2021年高考冲刺之二轮专题精讲精析,文件包含专题11圆锥曲线原卷版-2021年高考冲刺之二轮专题精讲精析doc、专题11圆锥曲线解析版-2021年高考冲刺之二轮专题精讲精析doc等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
专题15 导数的应用-2021年高考冲刺之二轮专题精讲精析: 这是一份专题15 导数的应用-2021年高考冲刺之二轮专题精讲精析,文件包含专题15导数的应用原卷版-2021年高考冲刺之二轮专题精讲精析doc、专题15导数的应用解析版-2021年高考冲刺之二轮专题精讲精析doc等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
专题13 概率与统计-2021年高考冲刺之二轮专题精讲精析: 这是一份专题13 概率与统计-2021年高考冲刺之二轮专题精讲精析,文件包含专题13概率与统计原卷版-2021年高考冲刺之二轮专题精讲精析doc、专题13概率与统计解析版-2021年高考冲刺之二轮专题精讲精析doc等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。