(新高考专用)2021年新高考数学难点:专题33 利用条件概率公式求解条件概率
展开专题33 利用条件概率公式求解条件概率
一、单选题
1.袋中有5个球(3个白球,2个黑球)现每次取一球,无放回抽取2次,则在第一次抽到白球的条件下,第二次抽到白球的概率为( )
A.3/5 B.3/4 C.1/2 D.3/10
2.有歌唱道:“江西是个好地方,山清水秀好风光.”现有甲乙两位游客慕名来到江西旅游,分别准备从庐山、三清山、龙虎山和明月山个著名旅游景点中随机选择其中一个景点游玩,记事件:甲和乙至少一人选择庐山,事件:甲和乙选择的景点不同,则条件概率( )
A. B. C. D.
3.长春气象台统计,7月15日净月区下雨的概率为,刮风的概率为,既刮风又下雨的概率为,设事件为下雨,事件为刮风,那么( )
A. B. C. D.
4.根据历年气象统计资料,某地四月份吹东风的概率为,下雨的概率为,既吹东风又下雨的概率为.则在下雨条件下吹东风的概率为( )
A. B. C. D.
5.甲、乙、丙、丁四位同学计划去4个景点旅游,每人只去一个景点,设事件=“四位同学去的景点不相同”,事件=“甲同学独自去一个景点”,则( )
A. B. C. D.
6.袋中有大小完全相同的2个白球和3个黄球,逐个不放回的摸出两球,设“第一次摸得白球”为事件,“摸得的两球同色”为事件,则( )
A. B. C. D.
7.已知6个高尔夫球中有2个不合格,每次任取1个,不放回地取两次.在第一次取到合格高尔夫球的条件下,第二次取到不合格高尔夫球的概率为( )
A. B. C. D.
8.袋中装有形状和大小完全相同的4个黑球,3个白球,从中不放回地依次随机摸取两球,在第一次摸到了黑球的条件下,第二次摸到白球的概率是( )
A. B. C. D.
9.已知,,则等于( )
A. B. C. D.
10.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出次品的条件下,第二次摸到正品的概率是( )
A. B. C. D.
11.一袋中共有10个大小相同的黑球和白球,若从袋中任意摸出2个球,至少有1个白球的概率为,现从中不放回地取球,每次取1球,取2次,若已知第2次取得白球的条件下,则第1次取得黑球的概率为( )
A. B. C. D.
12.“幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中,阶幻方(,)是由前个正整数组成的一个阶方阵,其各行各列及两条对角线所含的n个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15.现从如图所示的3阶幻方中任取3个不同的数,记“取到的3个数和为15”为事件,“取到的3个数可以构成一个等差数列”为事件,则( )
A. B. C. D.
13.2020年疫情的到来给我们生活学习等各方面带来种种困难.为了顺利迎接高考,省里制定了周密的毕业年级复学计划.为了确保安全开学,全省组织毕业年级学生进行核酸检测的筛查.学生先到医务室进行咽拭子检验,检验呈阳性者需到防疫部门做进一步检测.已知随机抽一人检验呈阳性的概率为0.2%,且每个人检验是否呈阳性相互独立,若该疾病患病率为0.1%,且患病者检验呈阳性的概率为99%.若某人检验呈阳性,则他确实患病的概率( )
A.0.99% B.99% C.49.5%. D.36.5%
14.已知,,则等于( )
A. B. C. D.
15.端午节是我国的传统节日,每逢端午家家户户都要吃粽子,现有5个粽子,其中3个咸蛋黄馅2个豆沙馅,随机取出2个,事件“取到的2个为同一种馅”,事件“取到的2个都是豆沙馅”,则( )
A. B. C. D.
16.从1,2,3,4,5,6,7中任取两个不同的数,事件为“取到的两个数的和为偶数”,事件为“取到的两个数均为偶数”,则( )
A. B. C. D.
17.如下图,四边形是以O为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形内”,用B表示事件“豆子落在扇形 (阴影部分)内”,则( )
A. B. C. D.
18.某学校高三()班要从名班干部(其中名男生,名女生)中选取人参加学校优秀班干部评选,事件男生甲被选中,事件有两名女生被选中,则( )
A. B. C. D.
19.从标有数字1,2,3,4,5的五张卡片中,依次抽出2张(取后不放回),则在第一次抽到卡片是偶数的情况下,第二次抽到卡片是奇数的概率为( )
A. B. C. D.
20.某次校园活动中,组织者给到场的前1000名同学分发编号的号码纸,每人一张,活动结束时公布获奖规则.获奖规则为:①号码的三位数字之和是7的倍数者可获得纪念品;②号码的三位数字全是奇数者可获得纪念品.已知某同学的号码满足获得纪念品的条件,则他同时可以获得纪念品的概率是( )
A.0.016 B.0.032 C.0.064 D.0.128
21.假定男女出生率相等,某个家庭有两个小孩,已知该家庭至少有一个女孩,则两个小孩都是女孩的概率是( )
A. B. C. D.
22.甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.8,在目标被击中的条件下,甲、乙同时击中目标的概率为( )
A. B. C. D.
23.如图,在边长为1的正方形内任取一点,用表示事件“点恰好取自曲线与直线及轴所围成的曲边梯形内”,表示事件“点恰好取自阴影部分内”,则( )
A. B. C. D.
24..三台中学实验学校现有三门选修课,甲、乙、丙三人每人只选修一门,设事件A为“三人选修的课程都不同”,B为“甲独自选修一门”,则概率P(A|B)等于( )
A. B. C. D.
25.掷骰子2次,每个结果以记之,其中,,分别表示第一颗,第二颗骰子的点数,设,,则( )
A. B. C. D.
26.已知某同学在高二期末考试中,A和B两道选择题同时答对的概率为,在A题答对的情况下,B题也答对的概率为,则A题答对的概率为( )
A. B. C. D.
27.设,为两个事件,若事件和同时发生的概率为,在事件发生的条件下,事件发生的概率为,则事件发生的概率为( )
A. B. C. D.
28.抛掷一枚质地均匀的骰子两次,记事件{两次的点数均为偶数},{两次的点数之和小于8},则( )
A. B. C. D.
二、多选题
29.甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱中,分别以,,表示由甲箱中取出的是红球,白球和黑球的事件;再从乙箱中随机取出一球,以表示由乙箱中取出的球是红球的事件,则下列结论正确的是( )
A. B.
C.事件与事件相互独立 D.、、两两互斥
30.一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是;②从中有放回的取球6次,每次任取一球,恰好有两次白球的概率为;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为. 则其中正确命题的序号是( )
A.① B.② C.③ D.④
31.下列有关说法正确的是( )
A.的展开式中含项的二项式系数为20;
B.事件为必然事件,则事件、是互为对立事件;
C.设随机变量服从正态分布,若,则与的值分别为,;
D.甲、乙、丙、丁4个人到4个景点旅游,每人只去一个景点,设事件“4个人去的景点各不相同”,事件“甲独自去一个景点”,则.
三、填空题
32.伟大出自平凡,英雄来自人民.在疫情防控一线,北京某大学学生会自发从学生会6名男生和8名女生骨干成员中选出2人作为队长率领他们加入武汉社区服务队,用表示事件“抽到的2名队长性别相同”,表示事件“抽到的2名队长都是男生”,则______.
33.袋中有5个大小完全相同的球,其中2个黑球,3个白球.不放回地连续取两次,则已知在第一次取到黑球的条件下,第二次取到白球的概率为__________.
34.从装有个红球个白球的袋子中先后取个球,取后不放回,在第一次取到红球的条件下,第二次取到红球的概率为______.
35.某校组织甲、乙、丙、丁、戊、己等6名学生参加演讲比赛,采用抽签法决定演讲顺序,在“学生甲和乙都不是第一个出场,且甲不是最后一个出场”的前提下,学生丙第一个出场的概率为__________.
36.已知,,则__________.
37.某盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次摸出2个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为_______.
38.据统计,连续熬夜48小时诱发心脏病的概率为0.055,连续熬夜72小时诱发心脏病的概率为0.19.现有一人已连续熬夜48小时未诱发心脏病,则他还能继续连续熬夜24小时不诱发心脏病的概率为______.
39.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6.已知某天的空气质量为优良,则随后一天的空气质量为优良的概率为______________.
40.为了营造勤奋读书、努力学习、奋发向上的文化氛围,提高学生的阅读兴趣,某校开展了“朗读者”闯关活动,各选手在第一轮要进行诗词朗读的比拼,第二轮进行诗词背诵的比拼.已知某学生通过第一关的概率为,在已经通过第一关的前提下通过第二关的概率为,则该同学两关均通过的概率为______.
41.设,,则等于________.
42.已知甲、乙、丙三名同学同时独立地解答一道导数试题,每人均有的概率解答正确,且三个人解答正确与否相互独立,在三人中至少有两人解答正确的条件下,甲解答不正确的概率_______
43.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为______.
四、解答题
44.田忌赛马的故事出自《史记》中的《孙子吴起列传》.齐国的大将田忌很喜欢赛马,有一回,他和齐威王约定,要进行一场比赛.双方各自有三匹马,马都可以分为上,中,下三等.上等马都比中等马强,中等马都比下等马强,但是齐威王每个等级的马都比田忌相应等级的马强一些,比赛共三局,每局双方分别各派一匹马出场,且每匹马只赛一局,胜两局或三局的一方获得比赛胜利,在比赛之前,双方都不知道对方马的出场顺序.
(1)求在第一局比赛中田忌胜利的概率:
(2)若第一局齐威王派出场的是上等马,而田忌派出场的是下等马,求本场比赛田忌胜利的概率;
(3)写出在一场比赛中田忌胜利的概率(直接写出结果).
45.2020年初,武汉出现新型冠状病毒肺炎疫情,并快速席卷我国其他地区,口罩成了重要的防疫物资.某口罩生产厂不断加大投入,高速生产,现对其2月1日~2月9日连续9天的日生产量(单位:十万只,)数据作了初步处理,得到如图所示的散点图及一些统计量的值:
2.72 | 19 | 139.09 | 1095 |
注:图中日期代码1~9分别对应2月1日~2月9日;表中,.
(1)从9个样本点中任意选取2个,在2个点的日生产量都不高于三十万只的条件下,求2个都高于二十万只的概率;
(2)由散点图分析,样本点都集中在曲线的附近,请求y关于t的方程,并估计该厂从什么时候开始日生产量超过四十万只.
参考公式:回归直线方程是,,.
参考数据:.
2024年高考数学重难点突破讲义:配套热练 第2讲 互斥、对立、独立事件与条件概率、全概率公式: 这是一份2024年高考数学重难点突破讲义:配套热练 第2讲 互斥、对立、独立事件与条件概率、全概率公式,共7页。
高考数学二轮复习专题 条件概率、条件概率的性质及应用、全概率公式、贝叶斯公式(原卷版+解析版): 这是一份高考数学二轮复习专题 条件概率、条件概率的性质及应用、全概率公式、贝叶斯公式(原卷版+解析版),共26页。
第43练 条件概率与全概率公式-高考数学一轮复习小题多维练(新高考专用): 这是一份第43练 条件概率与全概率公式-高考数学一轮复习小题多维练(新高考专用),文件包含第43练条件概率与全概率公式-高考数学一轮复习小题多维练新高考专用解析版docx、第43练条件概率与全概率公式-高考数学一轮复习小题多维练新高考专用原卷版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。