初中数学华师大版八年级下册17.5实践与探索课文配套ppt课件
展开问题:为了研究某合金材料的体积V(cm3)随温度t(℃)变化的规律,对一个用这种合金制成的圆球测得相关数据如下:
能否据此求出V和t的函数关系?
对于上面这个问题,我们可以将这些数值所对应的点在坐标系中作出.我们发现,这些点大致位于一条直线上,可知V和t近似地符合一次函数关系.我们可以用一条直线去尽可能地与这些点相符合,求出近似的函数关系式.如下图所示的就是一条这样的直线,较近似的点应该是(10,1000.3)和(60,1002.3).
设V=kt+b(k≠0),把(10,1000.3)和(60,1002.3)代入,可得k=0.04,b=999.7. V=0.04t+999.7. 可以将直线稍稍挪动一下,不取这两点,换上更适当的两点.
我们曾采用待定系数法求得一次函数和反比例函数的关系式.但是现实生活中的数量关系是错综复杂的,在实践中得到一些变量的对应值,有时很难精确地判断它们是什么函数,需要我们根据经验分析,也需要进行近似计算和修正,建立比较接近的函数关系式进行研究.
1.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身长调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:
(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式(不要求写出x的取值范围); (2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.
2.某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回.已知该公司租车从基地到公司的运输费为5000元. (1)分别写出该公司两种购买方案的付款y(元)与所买的水果量x(千克)之间的函数关系式,并写出自变量x的取值范围. (2)当购买量在什么范围时,选择哪种购买方案付款最少?并说明理由.
通过这节课的学习,你有哪些收获?
现实生活中的数量关系是错综复杂的,在实践中得到的一些变量的对应值,有时很难精确地判断它们有怎样的函数关系,需要我们根据经验分析,进行近似计算和修正,列出比较接近的函数表达式进行研究.
初中数学17.5实践与探索作业ppt课件: 这是一份初中数学17.5实践与探索作业ppt课件,共9页。
数学八年级下册17.5实践与探索习题课件ppt: 这是一份数学八年级下册17.5实践与探索习题课件ppt,共20页。
华师大版八年级下册17.5实践与探索教学课件ppt: 这是一份华师大版八年级下册17.5实践与探索教学课件ppt,共4页。