![【精品练习卷】人教版 九年级下册数学 专题三 方案设计问题—代数类 练习卷01](http://img-preview.51jiaoxi.com/2/3/5856232/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【精品练习卷】人教版 九年级下册数学 专题三 方案设计问题—代数类 练习卷02](http://img-preview.51jiaoxi.com/2/3/5856232/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【精品练习卷】人教版 九年级下册数学 专题三 方案设计问题—代数类 练习卷03](http://img-preview.51jiaoxi.com/2/3/5856232/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【精品练习卷】人教版 九年级下册数学 专题三 方案设计问题—代数类 练习卷
展开(时间:45分钟,满分73分)
班级:___________姓名:___________得分:___________
一、选择题(每题3分)
1. 宜宾市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为( )
A.4 B.5 C.6 D.7
【答案】B.
【解析】[来源:学科网]
试题分析:设生产甲产品x件,则乙产品(20﹣x)件,根据题意得:,解得:8≤x≤12,∵x为整数,∴x=8,9,10,11,12,∴有5种生产方案:
方案1,A产品8件,B产品12件;
方案2,A产品9件,B产品11件;
方案3,A产品10件,B产品10件;
方案4,A产品11件,B产品9件;
方案5,A产品12件,B产品8件;
故选B.
二、解答题(每题10分)
2.某商店购进甲乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.
(1)求甲、乙每个商品的进货单价;
(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?
(3)在条件(2)下,并且不再考虑其他因素,若甲乙两种商品全部售完,哪种方案利润最大?最大利润是多少?
【答案】(1)甲商品的单价是每件100元,乙每件80元;(2)有3种进货方案;(3)当甲进48件,乙进52件时,最大的利润是1520元.
【解析】
试题分析:(1)设甲每个商品的进货单价是x元,每个乙商品的进货单价是y元,根据“甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同”列方程组,解方程组即可求解;(2)设甲进货x件,乙进货(100﹣x)件,根据两种商品的进货总价不高于9000元,两种商品全部售完后的销售总额不低于10480元即可列不等式组求解,即可确定方案;(3)找出销售利润与x的函数关系式,利用一次函数的性质即可求解.
试题解析:(1)设甲每个商品的进货单价是x元,每个乙商品的进货单价是y元.
根据题意得:,
解得:x=100,y=80,
答:甲商品的单价是每件100元,乙每件80元;
(2)设甲进货x件,乙进货(100﹣x)件.
根据题意得:,
解得:48≤x≤50.
又∵x是正整数,则x的正整数值是48或49或50,则有3种进货方案;
(3)销售的利润w=100×10%x+80(100﹣x)×25%,即w=2000﹣10x,
则当x取得最小值48时,w取得最大值,是2000﹣10×48=1520(元).
此时,乙进的件数是100﹣48=52(件).
答:当甲进48件,乙进52件时,最大的利润是1520元.
考点:二元一次方程组的应用;一次函数的应用.
3.荔枝是深圳特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)
(1)、求桂味和糯米糍的售价分别是每千克多少元;
(2)、如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的两倍,请设计一种购买方案,使所需总费用最低.
【答案】(1)、桂味售价为每千克15元,糯米味售价为每千克20元;(2)、购买桂味4千克,糯米味8千克是,总费用最少.[来源:学科网ZXXK]
【解析】
试题分析:(1)、首先设桂味售价为每千克x元,糯米味售价为每千克y元,根据题意列出二元一次方程组,从而求出x和y的值,得出答案;(2)、设购买桂味t千克,总费用为w元,则购买糯米味12-t千克,根据题意得出t的取值范围,然后得出w与t的函数关系式,从而得出最值.
试题解析:(1)、设桂味售价为每千克x元,糯米味售价为每千克y元,根据题意得:
解得:
答:桂味售价为每千克15元,糯米味售价为每千克20元。
(2)、设购买桂味t千克,总费用为w元,则购买糯米味12-t千克, ∴12-t≥2t ∴t≤4
W=15t+20(12-t)=-5t+240. ∵k=-5<0 ∴w随t的增大而减小
∴当t=4时,wmin=220.[来源:学科网]
答:购买桂味4千克,糯米味8千克是,总费用最少。
4.为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.
(1)求y与x的函数关系式;
(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.
【答案】(1)、y=6.4x+32;(2)、137元.
【解析】
试题分析:(1)、利用得到系数法求解析式,列出方程组解答即可;(2)、根据所需费用为W=A种树苗的费用+B种树苗的费用,即可解答.
试题解析:(1)、设y与x的函数关系式为:y=kx+b, 把(20,160),(40,288)代入y=kx+b得:
解得: ∴y=6.4x+32.
(2)、∵B种苗的数量不超过35棵,但不少于A种苗的数量,∴ ∴22.5≤x≤35,
设总费用为W元,则W=6.4x+32+7(45﹣x)=﹣0.6x+347,
∵k=﹣0.6, ∴y随x的增大而减小, ∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=137(元).
5.我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg~5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):
方案A:每千克5.8元,由基地免费送货.
方案B:每千克5元,客户需支付运费2000元.
(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;
(2)求购买量x在什么范围时,选用方案A比方案B付款少;
(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.
【答案】(1)、A、y=5.8x;B、y=5x+2000;(2)、;(3)、方案B.
【解析】
试题分析:(1)、根据数量关系列出函数表达式即可;(2)、先求出方案A应付款y与购买量x的函数关系为,方案B 应付款y与购买量x的函数关系为,然后分段求出哪种方案付款少即可;(3)、令y=20000,分别代入A方案和B方案的函数关系式中,求出x,比大小.
试题解析:(1)、方案A:函数表达式为. 方案B:函数表达式为
(2)、由题意,得. 解不等式,得x<2500
∴当购买量x的取值范围为时,选用方案A比方案B付款少.
(3)、他应选择方案B.
6.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)小明选择哪家快递公司更省钱?
【答案】(1),;(2)当<x<4时,选乙快递公司省钱;当x=4或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司省钱.
【解析】
试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;
(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.
试题解析:(1)由题意知:
当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3;
∴,;
(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<;
令y甲=y乙,即22x=16x+3,解得:x=;
令y甲>y乙,即22x>16x+3,解得:<x≤1.
②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;
令y甲=y乙,即15x+7=16x+3,解得:x=4;
令y甲>y乙,即15x+7>16x+3,解得:0<x<4.
综上可知:当<x<4时,选乙快递公司省钱;当x=4或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司省钱.
7.某水果积极计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).如表为装运甲、乙、丙三种水果的重量及利润.
(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?
(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),假设装运甲水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)
(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?[来源:学科网]
【答案】(1)装运乙种水果的车有2辆、丙种水果的汽车有6辆;(2)装运乙种水果的汽车是(m﹣12)辆,丙种水果的汽车是(32﹣2m)辆;(3)当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆,利润最大,最大利润为366元.
【解析】[来源:Zxxk.Com]
试题分析:(1)根据“8辆汽车装运乙、丙两种水果共22吨到A地销售”列出方程组,即可解答;
(2)设装运乙、丙水果的车分别为a辆,b辆,列出方程组,即可解答;
(3)设总利润为w千元,表示出w=10m+216.列出不等式组,确定m的取值范围13≤m≤15.5,结合一次函数的性质,即可解答.
试题解析:(1)设装运乙、丙水果的车分别为x辆,y辆,得:,解得:.
答:装运乙种水果的车有2辆、丙种水果的汽车有6辆.
(2)设装运乙、丙水果的车分别为a辆,b辆,得:,解得:.
答:装运乙种水果的汽车是(m﹣12)辆,丙种水果的汽车是(32﹣2m)辆.
(3)设总利润为w千元,w=4×5m+2×7(m﹣12)=4×3(32﹣2m)=10m+216.
∵,∴13≤m≤15.5,∵m为正整数,∴m=13,14,15,在w=10m+216中,w随x的增大而增大,∴当m=15时,W最大=366(千元).
答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆,利润最大,最大利润为366元.
中考方案设计型问题练习巩固: 这是一份中考方案设计型问题练习巩固,共2页。
初中数学中考复习 专题08 方案设计型问题(原卷版): 这是一份初中数学中考复习 专题08 方案设计型问题(原卷版),共9页。
(通用版)中考数学总复习随堂练习29《方案设计问题》(含答案): 这是一份(通用版)中考数学总复习随堂练习29《方案设计问题》(含答案),共3页。试卷主要包含了知识背景等内容,欢迎下载使用。