还剩22页未读,
继续阅读
所属成套资源:八年级数学期末冲刺复习(人教版,北师版,苏科,浙教版)
成套系列资料,整套一键下载
2020-2021学年 苏科版八年级数学上册期末冲刺 专题04 共点等腰三角形问题(教师版)
展开
2020-2021学年八年级数学上册期末综合复习专题提优训练(苏科版)
专题04 共点等腰三角形问题
【典型例题】
1.(2020·江苏江都·月考)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE(正三角形也叫等边三角形,它的三条边都相等,三个内角都等于60°),AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.试说明:
(1)AD=BE;
(2)填空∠AOE= °;
(3)CP=CQ;
【答案】
(1)∵△ABC和△CDE为等边三角形,
∴AC=BC,CD=CE,∠BCA=∠DCE=60°,
∴∠ACD=∠BCE,
在△ACD与△BCE中,
,
∴△ACD≌△BCE(SAS),
∴AD=BE;
(2)∵△ACD≌△BCE,
∴∠CAD=∠CBE,
∵∠APC=∠BPO,
∴∠BOP=∠ACP=60°,
∴∠AOE=18060°=120°,
故答案为:120;
(3)∵△ACD≌△BCE,
∴∠CAD=∠CBE,
∵∠ACB=∠DCE=60°,
∴∠BCQ=60°,
在△CQB和△CPA中,
,
∴△CQB≌△CPA(ASA),
∴CP=CQ.
【专题训练】
一、 选择题
1.(2020·南京师范大学附属中学江宁分校月考)如图,△ABD与△ACE均为正三角形,且AB<AC,则BE与CD之间的大小关系是( )、
A.BE=CD B.BE>CD C.BE<CD D.大小关系不确定
【答案】A
2.(2020·江苏省兴化市乐吾实验学校月考)如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是( )
A.平行 B.相交 C.垂直 D.平行、相交或垂直
【答案】A
3.(2020·陕西定边·期末)如图,与是一对全等的等边三角形,且,下列四个结论:①;②;③;④四边形是轴对称图形.其中正确的是( )
A.①②③ B.①②④ C.①③④ D.②③④
【答案】D
4.(2020·西工大附中分校初一月考)如图,△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM平分∠DCE,连接BE.以下结论:①AD=CE;②CM⊥AE;③AE=BE+2CM;④CM∥BE,正确的有( )
A.1个 B.2个 C.3个 D.4个
【答案】C
5.(2019·黑龙江甘南·初二期末)如图,分别以Rt△ABC的直角边AC、BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE、AF分别交AC、BC边于H、D两点.下列结论:①AF=BE;②∠AFC=∠EBC;③∠FAE=90°;④BD=FD,其中正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个
【答案】C
二、 填空题
6.(2020·浙江温州·月考)如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.
恒成立的结论有 .(把你认为正确的序号都填上)
【答案】①②③⑤
7.(2020·黑龙江甘南·初二期末)如图,等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2,A3,…都在直线C1C2同侧,如此下去,可得到△A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1,则△AnCnCn+1的周长为_______(n≥1,且n为整数).
【答案】
三、 解答题
8.(2020·辽宁昌图·期末)如图,△ABC,△BDE均为等腰直角三角形,连接AE,CD,AE与CD相等吗?说明理由
【答案】
解:AE=CD,
理由如下:和均为等腰直角三角形,
,,,
,
在和中,
,
,
∴AE=CD.
9.(2020·江苏东台·月考)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE
(1)如图1,当点D在线段BC上,且∠BAC=90°.
①说明:;
②线段CE、CD、BC的数量关系为______.
(2)如图2,当点D在直线BC上,设∠BAC=α,∠BCE=β.则α,β之间有怎样的数量关系?请直接写出你的结论.
【答案】
(1)①∵∠BAC=∠DAE
∴∠BAD+∠DAC=∠EAC+∠DAC
∴∠BAD=∠EAC
∵AB=AC,AD=AE
∴
②由(1)①结论得:BD=CE
∵点D在线段BC上
∴BD+CD=BC
∴CE+CD=BC;
(2)∵AB=AC,∠BAC=α
∴
∵
∴
∴
∵
∵∠BCE=β
∴
即.
10.(2019·南通市通州区平潮初级中学期中)△ABC是等边三角形,AD是高,△ADE是等边三角形,连接BE、ED.
(1)判断△EBD形状并证明.
(2)若△ABC的周长是6,求BE的长.
【答案】
解:(1)∵△ABC是等边三角形,AD是BC边上的高,
∴∠BAD=∠CAD=∠BAC=30°,BD=CD,
又∵△ADE为等边三角形,
∴∠DAE=60°,AD=AE,
则∠EAB=∠DAE-∠BAD=30°,
在△BAE和△BAD中,
,
∴△BAE≌△BAD(SAS),
∴BE=BD,
则△BDE是等腰三角形;
(2)∵△ABC是等边三角形,且边长为6,
∴BC=2,
∴BD=DC=1,
∵△BAE≌△BAD,
∴BE=BD=1.
11.(2020·山东垦利·期末)如图,△ABC和△ADE都是等边三角形,点B在ED的延长线上.
(1)求证:△ABD≌△ACE;
(2)若AE=2,CE=3,求BE的长;
(3)求∠BEC的度数
【答案】
(1)证明∵△ABC 和△ADE 都是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,
在△ABD和△ACE中,,
∴△ABD≌△ACE(SAS);
(2)解:∵△ABD≌△ACE,
∴BD=CE,
∵△ADE 是等边三角形,
∴DE=AE,
∵DE+BD=BE,
∴AE+CE=BE,
∴BE=2+3=5;
(3)解:∵△ADE 是等边三角形,
∴∠ADE=∠AED=60°,
∴∠ADB=180°﹣∠ADE=180°﹣60°=120°,
∵△ABD≌△ACE,
∴∠AEC=∠ADB=120°,
∴∠BEC=∠AEC﹣∠AED=120°﹣60°=60°.
12.(2020·江苏泰州·月考)在△ABC中,AB=AC,点D是直线BC上一点(不与B. C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90∘,则∠BCE= 度;
(2)如图2,
①说明:△ABD≌△ACE.
②说明:CE+DC=BC.
③设∠BAC=α,∠BCE=β.当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.
【答案】
解:(1)90°.
理由:∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC.即∠BAD=∠CAE.
在△ABD与△ACE中,
,
∴△ABD≌△ACE(SAS),
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB,
∴∠BCE=∠B+∠ACB,
又∵∠BAC=90°
∴∠BCE=90°;
故答案为:90.
(2)①∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC.即∠BAD=∠CAE.
在△ABD与△ACE中,
,
∴△ABD≌△ACE(SAS);
②∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC.即∠BAD=∠CAE.
在△ABD与△ACE中,
,
∴△ABD≌△ACE(SAS),
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB,
∴∠BCE=∠B+∠ACB,
又∵∠BAC=90°
∴∠BCE=90°,
∴α+β=180°;
③相等或互补,理由:
(1)当点D在射线BC的反向延长线上时,α=β.
∵∠DAE=∠BAC,
∴∠DAB=∠EAC,
在△ADB和△AEC中,
,
∴△ADB≌△AEC(SAS),
∴∠ABD=∠ACE,
∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,
∴∠BCE=∠B+∠ACB,
又∵∠BAC=90°
∴∠BCE=90°,
∴α+β=180°.
(2)当点D在线段BC和BC延长线上时,是α+β=180°,
在BC的反向延长线上时,是α=β,
综上所述,α+β=180°或α=β.
13.(2020·湖南鹤城·期末)(1)问题发现:
如图①,△ABC与△ADE是等边三角形,且点B,D,E在同一直线上,连接CE,求∠BEC的度数,并确定线段BD与CE的数量关系.
(2)拓展探究:
如图②,△ABC与△ADE都是等腰直角三角形,,且点B,D,E在同一直线上,AF⊥BE于点F,连接CE,求∠BEC的度数,并确定线段AF,BF,CE之间的数量关系.
【答案】
解:(1)因为△ABC和△ADE均为等边三角形,
所以,,,,
所以,
即.
在和中,,
所以≌,
所以,.
因为点,,在同一直线上,
所以,
所以,
所以.
综上可得,的度数为,线段与之间的数量关系是.
(2)因为和均为等腰直角三角形,
所以,,,,
所以,
即.
在和中,
,
所以≌,
所以,.
因为点,,在同一直线上,
所以,
所以,
所以.
因为,,,
易证,所以.
14.(2020·云南文山·期末)如图1,已知点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H.
(1)求出∠ACE的度数;
(2)请在图1中找出一对全等的三角形,并说明全等的理由;
(3)若将△CDE绕点C转动如图2所示的位置,其余条件不变,(2)中的结论是否还成立,试说明理由.
【答案】
(1)因为△ABC和△CDE都是等边三角形,
所以,
所以
;
(2),
理由:由(1)得,
所以,
即.
因为和都是等边三角形,
所以,
在与中
,
所以;
(3)成立,
理由:因为和都是等边三角形,
所以,
所以,
即,
在与中
,
所以.
15.(2020·四川郫都·期末)探究等边三角形“手拉手”问题.
(1)如图1,已如△ABC,△ADE均为等边三角形,点D在线段BC上,且不与点B、点C重合,连接CE,试判断CE与BA的位置关系,并说明理由;
(2)如图2,已知△ABC、△ADE均为等边三角形,连接CE、BD,若∠DEC=60°,试说明点B,点D,点E在同一直线上;
(3)如图3,已知点E在ABC外,并且与点B位于线段AC的异侧,连接BE、CE.若∠BEC=60°,猜测线段BE、AE、CE三者之间的数量关系,并说明理由.
【答案】
(1)解:结论:CE∥AB.
理由:如图1中,
∵△ABC,△ADE都是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=60°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE(SAS),
∴∠B=∠ACE=60°,
∴∠BAC=∠ACE=60°,
∴AB∥CE.
(2)证明:如图2中,
由(1)可知,△ABD≌△ACE,
∴∠ADB=∠AEC,
∵△ADE是等边三角形,
∴∠AED=∠ADE=60°,
∵∠BEC=60°,
∴∠AEC=∠AED+∠BEC=120°,
∴∠ADB=∠AEC=120°,
∴∠ADB+∠ADE=120°+60°=180°,
∴B,D,E共线.
(3)解:结论:BE=AE+EC.
理由:在线段BE上取一点H,使得BH=CE,设AC交BE于点O.
∵△ABC是等边三角形,
∴AB=BC,∠BAC=60°,
∵∠BEC=60°,
∴∠BAO=∠OEC=60°,
∵∠AOB=∠EOC,
∴∠ABH=∠ACE,
∵BA=CA,BH=CE,
∴△ABH≌△ACE(SAS),
∴∠BAH=∠CAE,AH=AE,
∴∠HAE=∠BAC=60°,
∴△AEH是等边三角形,
∴AE=EH,
∴BE=BH+EH=EC+AE,
即BE=AE+EC.
16.(2019·广西玉林·)如图,直角坐标系中,点A的坐标为(3,0),以线段OA为边在第四象限内作等边△AOB,点C为轴正半轴上一动点(OC>3),连结BC,以线段BC为边在第四象限内作等边△CBD,直线DA交轴于点E.
(1)证明∠ACB=∠ADB;
(2)若以A,E,C为顶点的三角形是等腰三角形,求此时C点的坐标;
(3)随着点C位置的变化,的值是否会发生变化?若没有变化,求出这个值;若有变化,说明理由.
【答案】
解:(1)∵△AOB和△CBD是等边三角形
∴OB=AB,BC=BD,∠OBA=∠CBD=,
∴∠OBA+∠ABC=∠CBD+∠ABC,
即∠OBC=∠ABD
∴在△OBC与△ABD中,
OB=AB,∠OBC=∠ABD,BC=BD
∴△OBC≌△ABD(SAS)
∴∠OCB=∠ADB
即∠ACB=∠ADB
(2)∵△OBC≌△ABD
∴∠BOC=∠BAD=
又∵∠OAB=
∴∠OAE==,
∴∠EAC=,∠OEA=,
∴在以A,E,C为顶点的等腰三角形中AE和AC是腰.
∵ 在Rt△AOE中,OA=3,∠OEA=
∴AE=6
∴AC=AE=6
∴OC=3+6=9
∴以A,E,C为顶点的三角形是等腰三角形时,C点的坐标为(9,0)
(3)的值不变.
理由: 由(2)得
∠OAE=-∠OAB-∠BAD=
∴∠OEA=
∴ 在Rt△AOE中,EA=2OA
∴=.
17.(2020·四川彭州·期末)(1)如图1,△ABC和△DCE都是等边三角形,且B,C,D三点在一条直线上,连接AD,BE相交于点P,求证:BE=AD.
(2)如图2,在△BCD中,若,分别以BC,CD和BD为边在△BCD外部作等边△ABC,等边△CDE,等边△BDF,连接AD、BE、CF恰交于点P.
①求证:AD=BE=CF;
②如图2,在(2)的条件下,试猜想PB,PC,PD与BE存在怎样的数量关系,并说明理由.
【答案】
(1)证明:∵和都是等边三角形,
∴BC=AC,CE=CD,∠ACB=∠DCE=60°,
∴∠ABC+∠ACE=∠DCE+∠ACE,
即∠BCE=∠ACD,
∴(SAS),
∴BE=AD;
(2)①证明:∵和是等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,
即∠ACD=∠BCE,
∴(SAS),
∴AD=BE,
同理:(SAS),
∴AD=CF,
即AD=BE=CF;
②解:结论:PB+PC+PD=BE,
理由:如图2,AD与BC的交点记作点Q,则∠AQC=∠BQP,
由①知,,
∴∠CAD=∠CBE,
在中,∠CAD+∠AQC=180°-∠ACB=120°,
∴∠CBE+∠BQP=120°,
在中,∠APB=180°-(∠CBE+∠BQP)=60°,
∴∠DPE=60°,
同理:∠APC=60°,
∠CPD=120°,
在PE上取一点M,使PM=PC,
∴是等边三角形,
∴,∠PCM=∠CMP=60°,
∴∠CME=120°=∠CPD,
∵是等边三角形,
∴CD=CE,∠DCE=60°=∠PCM,
∴∠PCD=∠MCE,
∴(SAS),
∴PD=ME,
∴BE=PB+PM+ME=PB+PC+PD.
18.(2020·湖南湘潭电机子弟中学初二月考)如图1,已知点B(0,6),点C为x轴上一动点,连接BC,△ODC和△EBC都是等边三角形.
图1 图2 图3
(1)求证:DE=BO;
(2)如图2,当点D恰好落在BC上时.
①求OC的长及点E的坐标;
②在x轴上是否存在点P,使△PEC为等腰三角形?若存在,写出点P的坐标;若不存在,说明理由;
③如图3,点M是线段BC上的动点(点B,C除外),过点M作MG⊥BE于点G,MH⊥CE于点H,当点M运动时,MH+MG的值是否发生变化?若不会变化,直接写出MH+MG的值;若会变化,简要说明理由.
【答案】
解:(1)证明:∵△ODC和△EBC都是等边三角形,
∴OC=DC,BC=CE,∠OCD=∠BCE=60°.
∴∠BCE+∠BCD=∠OCD+∠BCD,
即∠ECD=∠BCO.
∴△DEC≌△OBC(SAS).
∴DE=BO.
(2)①∵△ODC是等边三角形,
∴∠OCB=60°.
∵∠BOC=90°,
∴∠OBC=30°.
设OC=x,则BC=2x,
∴x2+62=(2x)2.解得x=2.
∴OC=2,BC=4.
∵△EBC是等边三角形,
∴BE=BC=4.
又∵∠OBE=∠OBC+∠CBE=90°,
∴E(4,6).
②若点P在C点左侧,则CP=4,OP=4-2=2,点P的坐标为(-2,0);
若点P在C点右侧,则OP=2+4=6,点P的坐标为(6,0).
③不会变化,MH+MG=6
专题04 共点等腰三角形问题
【典型例题】
1.(2020·江苏江都·月考)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE(正三角形也叫等边三角形,它的三条边都相等,三个内角都等于60°),AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.试说明:
(1)AD=BE;
(2)填空∠AOE= °;
(3)CP=CQ;
【答案】
(1)∵△ABC和△CDE为等边三角形,
∴AC=BC,CD=CE,∠BCA=∠DCE=60°,
∴∠ACD=∠BCE,
在△ACD与△BCE中,
,
∴△ACD≌△BCE(SAS),
∴AD=BE;
(2)∵△ACD≌△BCE,
∴∠CAD=∠CBE,
∵∠APC=∠BPO,
∴∠BOP=∠ACP=60°,
∴∠AOE=18060°=120°,
故答案为:120;
(3)∵△ACD≌△BCE,
∴∠CAD=∠CBE,
∵∠ACB=∠DCE=60°,
∴∠BCQ=60°,
在△CQB和△CPA中,
,
∴△CQB≌△CPA(ASA),
∴CP=CQ.
【专题训练】
一、 选择题
1.(2020·南京师范大学附属中学江宁分校月考)如图,△ABD与△ACE均为正三角形,且AB<AC,则BE与CD之间的大小关系是( )、
A.BE=CD B.BE>CD C.BE<CD D.大小关系不确定
【答案】A
2.(2020·江苏省兴化市乐吾实验学校月考)如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是( )
A.平行 B.相交 C.垂直 D.平行、相交或垂直
【答案】A
3.(2020·陕西定边·期末)如图,与是一对全等的等边三角形,且,下列四个结论:①;②;③;④四边形是轴对称图形.其中正确的是( )
A.①②③ B.①②④ C.①③④ D.②③④
【答案】D
4.(2020·西工大附中分校初一月考)如图,△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM平分∠DCE,连接BE.以下结论:①AD=CE;②CM⊥AE;③AE=BE+2CM;④CM∥BE,正确的有( )
A.1个 B.2个 C.3个 D.4个
【答案】C
5.(2019·黑龙江甘南·初二期末)如图,分别以Rt△ABC的直角边AC、BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE、AF分别交AC、BC边于H、D两点.下列结论:①AF=BE;②∠AFC=∠EBC;③∠FAE=90°;④BD=FD,其中正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个
【答案】C
二、 填空题
6.(2020·浙江温州·月考)如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.
恒成立的结论有 .(把你认为正确的序号都填上)
【答案】①②③⑤
7.(2020·黑龙江甘南·初二期末)如图,等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2,A3,…都在直线C1C2同侧,如此下去,可得到△A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1,则△AnCnCn+1的周长为_______(n≥1,且n为整数).
【答案】
三、 解答题
8.(2020·辽宁昌图·期末)如图,△ABC,△BDE均为等腰直角三角形,连接AE,CD,AE与CD相等吗?说明理由
【答案】
解:AE=CD,
理由如下:和均为等腰直角三角形,
,,,
,
在和中,
,
,
∴AE=CD.
9.(2020·江苏东台·月考)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE
(1)如图1,当点D在线段BC上,且∠BAC=90°.
①说明:;
②线段CE、CD、BC的数量关系为______.
(2)如图2,当点D在直线BC上,设∠BAC=α,∠BCE=β.则α,β之间有怎样的数量关系?请直接写出你的结论.
【答案】
(1)①∵∠BAC=∠DAE
∴∠BAD+∠DAC=∠EAC+∠DAC
∴∠BAD=∠EAC
∵AB=AC,AD=AE
∴
②由(1)①结论得:BD=CE
∵点D在线段BC上
∴BD+CD=BC
∴CE+CD=BC;
(2)∵AB=AC,∠BAC=α
∴
∵
∴
∴
∵
∵∠BCE=β
∴
即.
10.(2019·南通市通州区平潮初级中学期中)△ABC是等边三角形,AD是高,△ADE是等边三角形,连接BE、ED.
(1)判断△EBD形状并证明.
(2)若△ABC的周长是6,求BE的长.
【答案】
解:(1)∵△ABC是等边三角形,AD是BC边上的高,
∴∠BAD=∠CAD=∠BAC=30°,BD=CD,
又∵△ADE为等边三角形,
∴∠DAE=60°,AD=AE,
则∠EAB=∠DAE-∠BAD=30°,
在△BAE和△BAD中,
,
∴△BAE≌△BAD(SAS),
∴BE=BD,
则△BDE是等腰三角形;
(2)∵△ABC是等边三角形,且边长为6,
∴BC=2,
∴BD=DC=1,
∵△BAE≌△BAD,
∴BE=BD=1.
11.(2020·山东垦利·期末)如图,△ABC和△ADE都是等边三角形,点B在ED的延长线上.
(1)求证:△ABD≌△ACE;
(2)若AE=2,CE=3,求BE的长;
(3)求∠BEC的度数
【答案】
(1)证明∵△ABC 和△ADE 都是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,
在△ABD和△ACE中,,
∴△ABD≌△ACE(SAS);
(2)解:∵△ABD≌△ACE,
∴BD=CE,
∵△ADE 是等边三角形,
∴DE=AE,
∵DE+BD=BE,
∴AE+CE=BE,
∴BE=2+3=5;
(3)解:∵△ADE 是等边三角形,
∴∠ADE=∠AED=60°,
∴∠ADB=180°﹣∠ADE=180°﹣60°=120°,
∵△ABD≌△ACE,
∴∠AEC=∠ADB=120°,
∴∠BEC=∠AEC﹣∠AED=120°﹣60°=60°.
12.(2020·江苏泰州·月考)在△ABC中,AB=AC,点D是直线BC上一点(不与B. C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90∘,则∠BCE= 度;
(2)如图2,
①说明:△ABD≌△ACE.
②说明:CE+DC=BC.
③设∠BAC=α,∠BCE=β.当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.
【答案】
解:(1)90°.
理由:∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC.即∠BAD=∠CAE.
在△ABD与△ACE中,
,
∴△ABD≌△ACE(SAS),
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB,
∴∠BCE=∠B+∠ACB,
又∵∠BAC=90°
∴∠BCE=90°;
故答案为:90.
(2)①∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC.即∠BAD=∠CAE.
在△ABD与△ACE中,
,
∴△ABD≌△ACE(SAS);
②∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC.即∠BAD=∠CAE.
在△ABD与△ACE中,
,
∴△ABD≌△ACE(SAS),
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB,
∴∠BCE=∠B+∠ACB,
又∵∠BAC=90°
∴∠BCE=90°,
∴α+β=180°;
③相等或互补,理由:
(1)当点D在射线BC的反向延长线上时,α=β.
∵∠DAE=∠BAC,
∴∠DAB=∠EAC,
在△ADB和△AEC中,
,
∴△ADB≌△AEC(SAS),
∴∠ABD=∠ACE,
∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,
∴∠BCE=∠B+∠ACB,
又∵∠BAC=90°
∴∠BCE=90°,
∴α+β=180°.
(2)当点D在线段BC和BC延长线上时,是α+β=180°,
在BC的反向延长线上时,是α=β,
综上所述,α+β=180°或α=β.
13.(2020·湖南鹤城·期末)(1)问题发现:
如图①,△ABC与△ADE是等边三角形,且点B,D,E在同一直线上,连接CE,求∠BEC的度数,并确定线段BD与CE的数量关系.
(2)拓展探究:
如图②,△ABC与△ADE都是等腰直角三角形,,且点B,D,E在同一直线上,AF⊥BE于点F,连接CE,求∠BEC的度数,并确定线段AF,BF,CE之间的数量关系.
【答案】
解:(1)因为△ABC和△ADE均为等边三角形,
所以,,,,
所以,
即.
在和中,,
所以≌,
所以,.
因为点,,在同一直线上,
所以,
所以,
所以.
综上可得,的度数为,线段与之间的数量关系是.
(2)因为和均为等腰直角三角形,
所以,,,,
所以,
即.
在和中,
,
所以≌,
所以,.
因为点,,在同一直线上,
所以,
所以,
所以.
因为,,,
易证,所以.
14.(2020·云南文山·期末)如图1,已知点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H.
(1)求出∠ACE的度数;
(2)请在图1中找出一对全等的三角形,并说明全等的理由;
(3)若将△CDE绕点C转动如图2所示的位置,其余条件不变,(2)中的结论是否还成立,试说明理由.
【答案】
(1)因为△ABC和△CDE都是等边三角形,
所以,
所以
;
(2),
理由:由(1)得,
所以,
即.
因为和都是等边三角形,
所以,
在与中
,
所以;
(3)成立,
理由:因为和都是等边三角形,
所以,
所以,
即,
在与中
,
所以.
15.(2020·四川郫都·期末)探究等边三角形“手拉手”问题.
(1)如图1,已如△ABC,△ADE均为等边三角形,点D在线段BC上,且不与点B、点C重合,连接CE,试判断CE与BA的位置关系,并说明理由;
(2)如图2,已知△ABC、△ADE均为等边三角形,连接CE、BD,若∠DEC=60°,试说明点B,点D,点E在同一直线上;
(3)如图3,已知点E在ABC外,并且与点B位于线段AC的异侧,连接BE、CE.若∠BEC=60°,猜测线段BE、AE、CE三者之间的数量关系,并说明理由.
【答案】
(1)解:结论:CE∥AB.
理由:如图1中,
∵△ABC,△ADE都是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=60°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE(SAS),
∴∠B=∠ACE=60°,
∴∠BAC=∠ACE=60°,
∴AB∥CE.
(2)证明:如图2中,
由(1)可知,△ABD≌△ACE,
∴∠ADB=∠AEC,
∵△ADE是等边三角形,
∴∠AED=∠ADE=60°,
∵∠BEC=60°,
∴∠AEC=∠AED+∠BEC=120°,
∴∠ADB=∠AEC=120°,
∴∠ADB+∠ADE=120°+60°=180°,
∴B,D,E共线.
(3)解:结论:BE=AE+EC.
理由:在线段BE上取一点H,使得BH=CE,设AC交BE于点O.
∵△ABC是等边三角形,
∴AB=BC,∠BAC=60°,
∵∠BEC=60°,
∴∠BAO=∠OEC=60°,
∵∠AOB=∠EOC,
∴∠ABH=∠ACE,
∵BA=CA,BH=CE,
∴△ABH≌△ACE(SAS),
∴∠BAH=∠CAE,AH=AE,
∴∠HAE=∠BAC=60°,
∴△AEH是等边三角形,
∴AE=EH,
∴BE=BH+EH=EC+AE,
即BE=AE+EC.
16.(2019·广西玉林·)如图,直角坐标系中,点A的坐标为(3,0),以线段OA为边在第四象限内作等边△AOB,点C为轴正半轴上一动点(OC>3),连结BC,以线段BC为边在第四象限内作等边△CBD,直线DA交轴于点E.
(1)证明∠ACB=∠ADB;
(2)若以A,E,C为顶点的三角形是等腰三角形,求此时C点的坐标;
(3)随着点C位置的变化,的值是否会发生变化?若没有变化,求出这个值;若有变化,说明理由.
【答案】
解:(1)∵△AOB和△CBD是等边三角形
∴OB=AB,BC=BD,∠OBA=∠CBD=,
∴∠OBA+∠ABC=∠CBD+∠ABC,
即∠OBC=∠ABD
∴在△OBC与△ABD中,
OB=AB,∠OBC=∠ABD,BC=BD
∴△OBC≌△ABD(SAS)
∴∠OCB=∠ADB
即∠ACB=∠ADB
(2)∵△OBC≌△ABD
∴∠BOC=∠BAD=
又∵∠OAB=
∴∠OAE==,
∴∠EAC=,∠OEA=,
∴在以A,E,C为顶点的等腰三角形中AE和AC是腰.
∵ 在Rt△AOE中,OA=3,∠OEA=
∴AE=6
∴AC=AE=6
∴OC=3+6=9
∴以A,E,C为顶点的三角形是等腰三角形时,C点的坐标为(9,0)
(3)的值不变.
理由: 由(2)得
∠OAE=-∠OAB-∠BAD=
∴∠OEA=
∴ 在Rt△AOE中,EA=2OA
∴=.
17.(2020·四川彭州·期末)(1)如图1,△ABC和△DCE都是等边三角形,且B,C,D三点在一条直线上,连接AD,BE相交于点P,求证:BE=AD.
(2)如图2,在△BCD中,若,分别以BC,CD和BD为边在△BCD外部作等边△ABC,等边△CDE,等边△BDF,连接AD、BE、CF恰交于点P.
①求证:AD=BE=CF;
②如图2,在(2)的条件下,试猜想PB,PC,PD与BE存在怎样的数量关系,并说明理由.
【答案】
(1)证明:∵和都是等边三角形,
∴BC=AC,CE=CD,∠ACB=∠DCE=60°,
∴∠ABC+∠ACE=∠DCE+∠ACE,
即∠BCE=∠ACD,
∴(SAS),
∴BE=AD;
(2)①证明:∵和是等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,
即∠ACD=∠BCE,
∴(SAS),
∴AD=BE,
同理:(SAS),
∴AD=CF,
即AD=BE=CF;
②解:结论:PB+PC+PD=BE,
理由:如图2,AD与BC的交点记作点Q,则∠AQC=∠BQP,
由①知,,
∴∠CAD=∠CBE,
在中,∠CAD+∠AQC=180°-∠ACB=120°,
∴∠CBE+∠BQP=120°,
在中,∠APB=180°-(∠CBE+∠BQP)=60°,
∴∠DPE=60°,
同理:∠APC=60°,
∠CPD=120°,
在PE上取一点M,使PM=PC,
∴是等边三角形,
∴,∠PCM=∠CMP=60°,
∴∠CME=120°=∠CPD,
∵是等边三角形,
∴CD=CE,∠DCE=60°=∠PCM,
∴∠PCD=∠MCE,
∴(SAS),
∴PD=ME,
∴BE=PB+PM+ME=PB+PC+PD.
18.(2020·湖南湘潭电机子弟中学初二月考)如图1,已知点B(0,6),点C为x轴上一动点,连接BC,△ODC和△EBC都是等边三角形.
图1 图2 图3
(1)求证:DE=BO;
(2)如图2,当点D恰好落在BC上时.
①求OC的长及点E的坐标;
②在x轴上是否存在点P,使△PEC为等腰三角形?若存在,写出点P的坐标;若不存在,说明理由;
③如图3,点M是线段BC上的动点(点B,C除外),过点M作MG⊥BE于点G,MH⊥CE于点H,当点M运动时,MH+MG的值是否发生变化?若不会变化,直接写出MH+MG的值;若会变化,简要说明理由.
【答案】
解:(1)证明:∵△ODC和△EBC都是等边三角形,
∴OC=DC,BC=CE,∠OCD=∠BCE=60°.
∴∠BCE+∠BCD=∠OCD+∠BCD,
即∠ECD=∠BCO.
∴△DEC≌△OBC(SAS).
∴DE=BO.
(2)①∵△ODC是等边三角形,
∴∠OCB=60°.
∵∠BOC=90°,
∴∠OBC=30°.
设OC=x,则BC=2x,
∴x2+62=(2x)2.解得x=2.
∴OC=2,BC=4.
∵△EBC是等边三角形,
∴BE=BC=4.
又∵∠OBE=∠OBC+∠CBE=90°,
∴E(4,6).
②若点P在C点左侧,则CP=4,OP=4-2=2,点P的坐标为(-2,0);
若点P在C点右侧,则OP=2+4=6,点P的坐标为(6,0).
③不会变化,MH+MG=6
相关资料
更多