![【北师大版】2021版高考数学一轮复习第二章函数及其应用2.8函数与方程练习第1页](http://img-preview.51jiaoxi.com/3/3/5815103/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【北师大版】2021版高考数学一轮复习第二章函数及其应用2.8函数与方程练习第2页](http://img-preview.51jiaoxi.com/3/3/5815103/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【北师大版】2021版高考数学一轮复习第二章函数及其应用2.8函数与方程练习第3页](http://img-preview.51jiaoxi.com/3/3/5815103/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:北师大版2021版高考数学一轮复习第二章函数及其应用全章练习
【北师大版】2021版高考数学一轮复习第二章函数及其应用2.8函数与方程练习
展开2.8 函数与方程核心考点·精准研析考点一 判断函数零点所在区间 1.已知实数a>1,0<b<1,则函数f(x)=ax+x-b的零点所在的区间是 ( )A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)2.设函数f(x)=x-ln x,则函数y=f(x) ( )A.在区间,(1,e)内均有零点B.在区间,(1,e)内均无零点C.在区间内有零点,在区间(1,e)内无零点D.在区间内无零点,在区间(1,e)内有零点3.(2020·扬州模拟)设函数y=x2与y=的图像交点为(x0,y0),则x0所在区间是 ( )A.(0,1) B.(1,2)C.(2,3) D.(3,4)4.若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)的两个零点分别位于区间 ( )A.(a,b)和(b,c)内 B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内 D.(-∞,a)和(c,+∞)内【解析】1.选B.因为a>1,0<b<1,f(x)=ax+x-b,所以f(-1)=-1-b<0,f(0)=1-b>0,由零点存在性定理可知f(x)在区间(-1,0)上存在零点.2.选D.令f(x)=0得x=ln x.作出函数y=x和y=ln x的图像,如图,显然y=f(x)在内无零点,在(1,e)内有零点.3.选B.因为函数y=x2与y=的图像交点为(x0,y0),则x0是方程x2=的解,也是函数f(x)=x2-的零点.因为函数f(x)在(0,+∞)上单调递增,f(2)=22-1=3>0,f(1)=1-2=-1<0,所以f(1)·f(2)<0.由零点存在性定理可知,方程的解在(1,2)内.4.选A.因为a<b<c,所以f(a)=(a-b)(a-c)>0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0,由函数零点存在性定理可知:在区间(a,b),(b,c)内分别存在零点,又函数f(x)是二次函数,最多有两个零点;因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内. 确定函数零点所在区间的常用方法(1)利用函数零点存在性定理.(2)数形结合法.【秒杀绝招】用特殊值法可解T2.考点二 确定函数零点的个数 【典例】1.函数f(x)=|x-2|-ln x零点的个数为 ( )A.0 B.1 C.2 D.32.(2019·全国卷Ⅲ)函数f(x)=2sin x-sin 2x在[0,2π]的零点个数为 ( )A.2 B.3 C.4 D.53.已知函数y=f(x)是周期为2的周期函数,且当x∈[-1,1]时,f(x)=2|x|-1,则函数F(x)=f(x)-|lg x|的零点个数是 ( )A.9 B.10 C.11 D.18【解题导思】序号联想解题1由f(x)=|x-2|-ln x的零点,想到|x-2|=ln x.2由f(x)=2sin x-sin 2x,想到化简,令f(x)=0求sin x与cos x的值.3由F(x)=f(x)-|lg x|的零点个数,想到f(x)=|lg x|.【解析】1.选C.作出函数y=|x-2|与g(x)=ln x的图像,如图所示.由图像可知两个函数的图像有两个交点,即函数f(x)在定义域内有2个零点.2.选B.令f(x)=2sin x-sin 2x=2sin x-2sin xcos x=2sin x(1-cos x)=0,则sin x=0或cos x=1,又x∈[0,2π],所以x=0,π,2π,共三个零点.3.选B.在同一平面直角坐标系内作出函数y=f(x)与y=|lg x|的大致图像如图,由图像可知,它们共有10个不同的交点,因此函数F(x)=f(x)-|lg x|的零点个数是10. 函数零点个数的判断方法(1)直接求零点.(2)利用零点存在性定理再结合函数的单调性确定零点个数.(3)利用函数图像的交点个数判断.1.函数f(x)=3x+x3-2在区间(0,1)内的零点个数是 ( )A.0 B.1 C.2 D.3【解析】选B.由题意知f(x)单调递增,且f(0)=1+0-2=-1<0,f(1)=3+1-2=2>0,即f(0)·f(1)<0且函数f(x)在(0,1)内连续不断,所以f(x)在区间(0,1)内有一个零点.2.(2020·上饶模拟)已知函数f(x)=函数g(x)=3-f(2-x),则函数y=f(x)-g(x)的零点个数为 ( )A.2 B.3 C.4 D.5【解析】选A.由已知条件可得g(x)=3-f(2-x)=函数y=f(x)-g(x)的零点个数即为函数y=f(x)与y=g(x)图像的交点个数,在平面直角坐标系内作出函数y=f(x)与y=g(x)的图像如图所示.由图可知函数y=f(x)与y=g(x)的图像有2个交点,所以函数y=f(x)-g(x)的零点个数为2.3.已知f(x)=则函数y=2[f(x)]2-3f(x)+1的零点个数是 . 【解析】由2[f(x)]2-3f(x)+1=0得f(x)=或f(x)=1,作出函数y=f(x)的图像.由图像知y=与y=f(x)的图像有2个交点,y=1与y=f(x)的图像有3个交点.因此函数y=2[f(x)]2-3f(x)+1的零点有5个.答案:5考点三 函数零点的应用 命题精解读1.考什么:(1)由函数的零点有无、个数求参数值或范围、图像的交点、解方程、解不等式等问题.(2)考查数学运算、直观想象、逻辑推理等核心素养.2.怎么考:多以选择、填空题的形式考查.3.新趋势:以函数图像与性质为载体,图像与性质、数与形、求参数值或范围交汇考查.学霸好方法已知函数有零点求参数值或取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围.(2)分离参数法:将参数分离,转化成求函数值域的问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.由零点的个数求参数值或范围【典例】已知函数f(x)=g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是 ( )A.[-1,0) B.[0,+∞)C.[-1,+∞) D.[1,+∞)【解析】选C.画出函数f(x)的图像,y=ex在y轴右侧的图像去掉,再画出直线y=-x,并上下移动,可以发现当直线过点(0,1)时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程f(x)=-x-a有两个解,也就是函数g(x)有两个零点,此时满足-a≤1,即a≥-1.已知函数零点个数求有关参数的取值范围问题的关键是什么?提示:关键是将函数零点个数问题转化为方程解的个数,或两个函数图像交点的个数问题,再去求解.由函数有无零点求参数【典例】若函数f(x)=4x-2x-a,x∈[-1,1]有零点,则实数a的取值范围是 . 【解析】因为函数f(x)=4x-2x-a,x∈[-1,1]有零点,所以方程4x-2x-a=0在[-1,1]上有解,即方程a=4x-2x在[-1,1]上有解.方程a=4x-2x可变形为a=-,因为x∈[-1,1],所以2x∈,令2x=t,t∈,a=-,0≤t-≤,0≤≤,-≤-≤2,所以a=-的范围为,所以实数a的取值范围是.答案:函数有(或无)零点如何求参数的范围?提示:先分离参数,再依据有(或无)零点得出等式(或不等式),最后得出结论.与函数零点有关的比较大小【典例】(2019·承德模拟)已知a是函数f(x)=2x-lox的零点,若0<x0<a,则f(x0)的值满足 ( )A.f(x0)=0 B.f(x0)>0C.f(x0)<0 D.f(x0)的符号不确定【解析】选C.在同一平面直角坐标系中作出函数y=2x,y=lox的图像,由图像可知,当0<x0<a时,有<lox0,即f(x0)<0.与函数零点有关的函数值如何比较大小?提示:在同一平面直角坐标系中画出图像,根据图像所处的上下位置确定.1.若函数f(x)=|2x-4|-a存在两个零点,且一个为正数,另一个为负数,则a的取值范围为 ( )A.(0,4) B.(0,+∞)C.(3,4) D.(3,+∞)【解析】选C.令g(x)=|2x-4|,其图像如图所示,若f(x)=|2x-4|-a存在两个零点,且一个为正数,另一个为负数,则a∈(3,4).2.已知函数f(x)=x+2x,g(x)=x+ln x,h(x)=x--1的零点分别为x1,x2,x3,则x1,x2,x3的大小关系是 ( )A.x2<x1<x3 B.x1<x2<x3C.x1<x3<x2 D.x3<x2<x1【解析】选B.令y1=2x,y2=ln x,y3=--1,因为函数f(x)=x+2x,g(x)=x+ln x,h(x)=x--1的零点分别为x1,x2,x3,则y1=2x,y2=ln x,y3=--1的图像与y=-x的交点的横坐标分别为x1,x2,x3,在同一平面直角坐标系内分别作出函数y1=2x,y2=ln x,y3=--1及y=-x的图像如图,结合图像可得x1<x2<x3.3.(2020·南通模拟)已知f(x)是定义在R上且周期为的周期函数,当x∈时,f(x)=1-|2x-1|.若函数y=f(x)-logax(a>1)在(0,+∞)上恰有4个互不相同的零点,则实数a的值为________________. 【解析】当x∈时,f(x)=1-|2x-1|=,且f(x)是定义在R上且周期为的周期函数,因为函数y=f(x)-logax(a>1)在(0,+∞)上恰有4个互不相同的零点,所以函数y=f(x)与y=logax(a>1)在(0,+∞)上恰有4个不同的交点,分别画出两函数图像如图所示,由图可知,当x=时,有loga=1,所以a=.答案:1.(2020·包头模拟)已知函数f(x)=ln x+3x-8的零点x0∈[a,b],且b-a=1,a,b∈N*,则a+b= ( )A.0 B.2 C.5 D.7【解析】选C.因为f(2)=ln 2+6-8=ln 2-2<0,f(3)=ln 3+9-8=ln 3+1>0,且函数f(x)=ln x+3x-8在(0,+∞)上为单调递增函数,所以x0∈[2,3],即a=2,b=3,所以a+b=5.2.已知a为正常数,f(x)=若∃x1,x2∈R,使f(x1)=f(x2),则实数a的取值范围是 . 【解析】由于a>0,函数y=x2+ax+3在[0,+∞)上单调递增,当x=0时有最小值为3.在x<0时,函数为增函数,要使x1,x2存在,使得f(x1)=f(x2),则需20+a>3,解得a>2.答案:(2,+∞)
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)