|学案下载
搜索
    上传资料 赚现金
    2021版新高考数学(理科)一轮复习教师用书:第11章第6节 n次独立重复试验与二项分布
    立即下载
    加入资料篮
    2021版新高考数学(理科)一轮复习教师用书:第11章第6节 n次独立重复试验与二项分布01
    2021版新高考数学(理科)一轮复习教师用书:第11章第6节 n次独立重复试验与二项分布02
    2021版新高考数学(理科)一轮复习教师用书:第11章第6节 n次独立重复试验与二项分布03
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021版新高考数学(理科)一轮复习教师用书:第11章第6节 n次独立重复试验与二项分布

    展开
    第六节 n次独立重复试验与二项分布
    [最新考纲] 1.了解条件概率的概念,了解两个事件相互独立的概念.2.理解n次独立重复试验的模型及二项分布,并能解决一些简单问题.


    1.条件概率
    条件概率的定义
    条件概率的性质
    设A,B为两个事件,且P(A)>0,称P(B|A)=为在事件A发生的条件下,事件B发生的条件概率
    (1)0≤P(B|A)≤1;
    (2)如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A)
    2.事件的相互独立性
    (1)定义:设A,B为两个事件,如果P(AB)=P(A)·P(B),则称事件A与事件B相互独立.
    (2)性质:①若事件A与B相互独立,则P(B|A)=P(B),P(A|B)=P(A).
    ②如果事件A与B相互独立,那么A与,与B,与也相互独立.
    3.独立重复试验与二项分布
    (1)独立重复试验
    在相同条件下重复做的n次试验称为n次独立重复试验,其中Ai(i=1,2,…,n)是第i次试验结果,则
    P(A1A2A3…An)=P(A1)P(A2)P(A3)…P(An).
    (2)二项分布
    在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=Cpk(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.

    牢记且理解事件中常见词语的含义
    (1)A,B中至少有一个发生的事件为A∪B;
    (2)A,B都发生的事件为AB;
    (3)A,B都不发生的事件为;
    (4)A,B恰有一个发生的事件为A∪B;
    (5)A,B至多一个发生的事件为A∪B∪.


    一、思考辨析(正确的打“√”,错误的打“×”)
    (1)相互独立事件就是互斥事件.(  )
    (2)若事件A,B相互独立,则P(B|A)=P(B).(  )
    (3)公式P(AB)=P(A)P(B)对任意两个事件都成立.(  )
    (4)二项分布是一个概率分布列,是一个用公式P(X=k)=Cpk(1-p)n-k,k=0,1,2,…,n表示的概率分布列,它表示了n次独立重复试验中事件A发生的次数的概率分布.(  )
    [答案] (1)× (2)√ (3)× (4)√
    二、教材改编
    1.如果某一批玉米种子中,每粒发芽的概率均为,那么播下5粒这样的种子,恰有2粒不发芽的概率是(  )
    A.   B.   C.   D.
    A [用X表示发芽的粒数,则X~B(5,),则P(X=3)=C×()3×(1-)2=,故播下5粒这样的种子,恰有2粒不发芽的概率为.]
    2.两个实习生每人加工一个零件,加工成一等品的概率分别为和,两个零件中能否被加工成一等品相互独立,则这两个零件中恰好有一个一等品的概率为(  )
    A. B. C. D.
    B [因为两人加工成一等品的概率分别为和,且相互独立,所以两个零件中恰好有一个一等品的概率P=×+×=.]
    3.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,则在第1次抽到文科题的条件下,第2次抽到理科题的概率为(  )
    A. B. C. D.
    D [根据题意,在第1次抽到文科题后,还剩4道题,其中有3道理科题;则第2次抽到理科题的概率P=,故选D.]
    4.一批产品的二等品率为0.02,从这批产品中每次随机抽取一件,有放回地抽取100次,X表示抽到的二等品的件数,则X服从二项分布,记作________.
    X~B(100,0.02) [根据题意,X~B(100,0.02).]


    考点1 条件概率
     求条件概率的2种方法
    (1)利用定义,分别求P(A)和P(AB),得P(B|A)=,这是求条件概率的通法.
    (2)借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件A与事件B的交事件中包含的基本事件数n(AB),得P(B|A)=.
     1.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=(  )
    A.   B.   C.   D.
    B [法一(直接法):P(A)===,P(AB)==.由条件概率计算公式,得P(B|A)===.
    法二(缩小样本空间法):事件A包括的基本事件:(1,3),(1,5),(3,5),(2,4)共4个.
    事件AB发生的结果只有(2,4)一种情形,即n(AB)=1.
    故由古典概型概率P(B|A)==.]
    2.(2019·运城模拟)有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.
    0.72 [设“种子发芽”为事件A,“种子成长为幼苗”为事件AB(发芽,又成活为幼苗).出芽后的幼苗成活率为P(B|A)=0.8,P(A)=0.9,根据条件概率公式得P(AB)=P(B|A)·P(A)=0.8×0.9=0.72,即这粒种子能成长为幼苗的概率为0.72.]
     判断所求概率为条件概率的主要依据是题目中的“已知”“在……前提下(条件下)”等字眼.第2题中没有出现上述字眼,但已知事件的发生影响了所求事件的概率,也认为是条件概率问题.运用P(AB)=P(B|A)·P(A),求条件概率的关键是求出P(A)和P(AB),要注意结合题目的具体情况进行分析.
    考点2 相互独立事件的概率
     求相互独立事件同时发生的概率的方法
    (1)首先判断几个事件的发生是否相互独立.
    (2)求相互独立事件同时发生的概率的方法主要有:
    ①利用相互独立事件的概率乘法公式直接求解.
    ②正面计算较繁或难以入手时,可从其对立事件入手计算.
     (1)天气预报,在元旦假期甲地的降雨概率是0.2,乙地的降雨概率是0.3.假设在这段时间内两地是否降雨相互之间没有影响,则这两地中恰有一个地方降雨的概率为(  )
    A.0.2 B.0.3 C.0.38 D.0.56
    (2)某乒乓球俱乐部派甲、乙、丙三名运动员参加某运动会的单打资格选拔赛,本次选拔赛只有出线和未出线两种情况.规定一名运动员出线记1分,未出线记0分.假设甲、乙、丙出线的概率分别为,,,他们出线与未出线是相互独立的.
    ①求在这次选拔赛中,这三名运动员至少有一名出线的概率;
    ②记在这次选拔赛中,甲、乙、丙三名运动员的得分之和为随机变量ξ,求随机变量ξ的分布列.
    (1)C [(1)设甲地降雨为事件A,乙地降雨为事件B,则两地恰有一地降雨为AB+AB,
    ∴P(AB+AB)=P(AB)+P(AB)
    =P(A)P(B)+P(A)P(B)=0.2×0.7+0.8×0.3=0.38.]
    (2)[解] ①记“甲出线”为事件A,“乙出线”为事件B,“丙出线”为事件C,“甲、乙、丙至少有一名出线”为事件D,
    则P(D)=1-P( )=1-××=.
    ②由题意可得,ξ的所有可能取值为0,1,2,3,
    则P(ξ=0)=P( )=××=;
    P(ξ=1)=P( )+P( )+P( )=××+××+××=;
    P(ξ=2)=P(ABC)+P(ABC)+P(ABC)=××+××+××=;
    P(ξ=3)=P(ABC)=××=.
    所以ξ的分布列为
    ξ
    0
    1
    2
    3
    P





     含有“恰好、至多、至少”等关键词的问题,求解的关键在于正确分析所求事件的构成,将其转化为彼此互斥事件的和或相互独立事件的积,然后利用相关公式进行计算.
    [教师备选例题]
    从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,.
    (1)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列;
    (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.
    [解] (1)随机变量X的所有可能取值为0,1,2,3,
    则P(X=0)=××=,
    P(X=1)=××+××+××=,
    P(X=2)=××+××+××=,
    P(X=3)=××=.
    所以随机变量X的分布列为
    X
    0
    1
    2
    3
    P




    (2)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为
    P(Y+Z=1)=P(Y=0,Z=1)+P(Y=1,Z=0)
    =P(Y=0)P(Z=1)+P(Y=1)P(Z=0)
    =×+×
    =.
    所以这2辆车共遇到1个红灯的概率为.
     (2019·全国卷Ⅱ)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束.
    (1)求P(X=2);
    (2)求事件“X=4且甲获胜”的概率.
    [解] (1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.
    (2)X=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.
    因此所求概率为
    [0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.
    考点3 独立重复试验与二项分布
     独立重复试验的概率
     独立重复试验概率求解的策略
    (1)首先判断问题中涉及的试验是否为n次独立重复试验,判断时注意各次试验之间是相互独立的,并且每次试验的结果只有两种,在任何一次试验中,某一事件发生的概率都相等,然后用相关公式求解.
    (2)解此类题时常用互斥事件概率加法公式,相互独立事件概率乘法公式及对立事件的概率公式.
     (1)位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是.质点P移动五次后位于点(2,3)的概率是________.
    (2)(2019·苏州模拟)某射手每次射击击中目标的概率是,且各次射击的结果互不影响.
    ①假设这名射手射击5次,求恰有2次击中目标的概率;
    ②假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率;
    ③假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分.记ξ为射手射击3次后的总分数,求ξ的分布列.
    (1) [由于质点每次移动一个单位,移动的方向为向上或向右,移动五次后位于点(2,3),所以质点P必须向右移动两次,向上移动三次,故其概率为C·=C=.]
    (2)[解] ①设X为射手在5次射击中击中目标的次数,则X~B.在5次射击中,恰有2次击中目标的概率为P(X=2)=C××=.
    ②设“第i次射击击中目标”为事件Ai(i=1,2,3,4,5),“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A,则
    P(A)=P(A1A2A345)+P(1A2A3A45)+P(12A3A4A5)=×+××+×=.
    ③设“第i次射击击中目标”为事件Ai(i=1,2,3).
    由题意可知,ξ的所有可能取值为0,1,2,3,6.
    P(ξ=0)=P(123)==;
    P(ξ=1)=P(A123)+P(1A23)+P(12A3)
    =×+××+×=;
    P(ξ=2)=P(A12A3)=××=;
    P(ξ=3)=P(A1A23)+P(1A2A3)
    =×+×=;
    P(ξ=6)=P(A1A2A3)==.
    所以ξ的分布列是
    ξ
    0
    1
    2
    3
    6
    P





     在求解过程中,本例(2)中②常因注意不到题设条件 “有3次连续击中目标,另外2次未击中目标”,盲目套用公式致误;本例(2)中③常因对ξ的取值不明,导致事件概率计算错误.
     一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.
    (1)设每盘游戏获得的分数为X,求X的分布列;
    (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
    [解] (1)X可能的取值为10,20,100,-200.
    根据题意,有
    P(X=10)=C××=,
    P(X=20)=C××=,
    P(X=100)=C××=,
    P(X=-200)=C××=.
    所以X的分布列为
    X
    10
    20
    100
    -200
    P




    (2)设“第i盘游戏没有出现音乐”为事件Ai(i=1,2,3),
    则P(A1)=P(A2)=P(A3)=P(X=-200)=.
    所以“三盘游戏中至少有一盘出现音乐”的概率为
    1-P(A1A2A3)=1-=1-=.
    因此,玩三盘游戏,至少有一盘出现音乐的概率是.
      二项分布
     (2019·秦皇岛模拟)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的质量(单位:克),质量的分组区间为(490,495],(495,500],…,(510,515].由此得到样本的频率分布直方图(如下图).

    (1)根据频率分布直方图,求质量超过505克的产品数量;
    (2)在上述抽取的40件产品中任取2件,设X为质量超过505克的产品数量,求X的分布列;
    (3)从该流水线上任取2件产品,设Y为质量超过505克的产品数量,求Y的分布列.
    [解] (1)质量超过505克的产品的频率为5×0.05+5×0.01=0.3,
    所以质量超过505克的产品数量为40×0.3=12(件).
    (2)重量超过505的产品数量为12件,则重量未超过505克的产品数量为28件,X的取值为0,1,2,
    X服从超几何分布.
    P(X=0)==,
    P(X=1)==,
    P(X=2)==,
    ∴X的分布列为
    X
    0
    1
    2
    P



    (3)根据样本估计总体的思想,取一件产品,该产品的质量超过505克的概率为=.
    从流水线上任取2件产品互不影响,该问题可看成2次独立重复试验,质量超过505克的件数Y的可能取值为0,1,2,且Y~B,
    P(Y=k)=C,
    所以P(Y=0)=C·=,
    P(Y=1)=C··=,
    P(Y=2)=C·=.
    ∴Y的分布列为
    Y
    0
    1
    2
    P



     (1)注意随机变量满足二项分布的关键词:
    ①视频率为概率;②人数很多、数量很大等.
    (2)求概率的过程,就是求排列数与组合数的过程,而在解决具体问题时要做到:
    ①分清
    ②判断事件的运算即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.
    [教师备选例题]
    某气象站天气预报的准确率为80%,计算(结果保留到小数点后第2位):
    (1)5次预报中恰有2次准确的概率;
    (2)5次预报中至少有2次准确的概率;
    (3)5次预报中恰有2次准确,且其中第3次预报准确的概率.
    [解] 令X表示5次预报中预报准确的次数,
    则X~B(5,0.8).
    (1)“5次预报中恰有2次准确”的概率为P(X=2)=C×0.82×(1-0.8)3=10×0.64×0.008≈0.05.
    (2)“5次预报中至少有2次准确”的概率为P(X≥2)=1-P(X=0)-P(X=1)=1-C×0.80×(1-0.8)5-C×0.8×(1-0.8)4=1-0.000 32-0.006 4≈0.99.
    (3)“5次预报中恰有2次准确,且其中第3次预报准确”的概率为C×0.8×(1-0.83)×0.8≈0.02.
     (2019·西安模拟)某学校用“10分制”调查本校学生对教师教学的满意度,现从学生中随机抽取16名,以茎叶图记录了他们对该校教师教学满意度的分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):

    (1)若教学满意度不低于9.5分,则称该生对教师的教学满意度为“极满意”.求从这16人中随机选取3人,至少有1人是“极满意”的概率;
    (2)以这16人的样本数据来估计整个学校的总体数据,若从该校所有学生中(学生人数很多)任选3人,记X表示抽到“极满意”的人数,求X的分布列及数学期望.
    [解] (1)设Ai表示所抽取的3人中有i个人是“极满意”,至少有1人是“极满意”记为事件A,则P(A)=1-P(A0)=1-=.
    (2)X的所有可能取值为0,1,2,3,由已知得X~B(3,),∴P(X=0)=()3=,
    P(X=1)=C×()×()2=,
    P(X=2)=C×()2×()=,
    P(X=3)=()3=.
    ∴X的分布列为
    X
    0
    1
    2
    3
    P




    ∴E(X)=3×=.

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021版新高考数学(理科)一轮复习教师用书:第11章第6节 n次独立重复试验与二项分布
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map