|学案下载
搜索
    上传资料 赚现金
    2021高考数学(理)人教A版一轮复习学案作业:第九章9.5椭 圆第2课时
    立即下载
    加入资料篮
    2021高考数学(理)人教A版一轮复习学案作业:第九章9.5椭 圆第2课时01
    2021高考数学(理)人教A版一轮复习学案作业:第九章9.5椭 圆第2课时02
    2021高考数学(理)人教A版一轮复习学案作业:第九章9.5椭 圆第2课时03
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021高考数学(理)人教A版一轮复习学案作业:第九章9.5椭 圆第2课时

    展开
    第2课时 直线与椭圆
    直线与椭圆的位置关系
    1.若直线y=kx+1与椭圆+=1总有公共点,则m的取值范围是(  )
    A.m>1 B.m>0
    C.0 答案 D
    解析 方法一 由于直线y=kx+1恒过点(0,1),
    所以点(0,1)必在椭圆内或椭圆上,
    则0<≤1且m≠5,
    故m≥1且m≠5.
    方法二 由
    消去y整理得(5k2+m)x2+10kx+5(1-m)=0.
    由题意知Δ=100k2-20(1-m)(5k2+m)≥0对一切k∈R恒成立,
    即5mk2+m2-m≥0对一切k∈R恒成立,
    由于m>0且m≠5,∴5k2+m-1≥0,
    ∴m≥1且m≠5.
    2.已知直线l:y=2x+m,椭圆C:+=1.试问当m取何值时,直线l与椭圆C:
    (1)有两个不重合的公共点;
    (2)有且只有一个公共点;
    (3)没有公共点.
    解 将直线l的方程与椭圆C的方程联立,
    得方程组
    将①代入②,整理得9x2+8mx+2m2-4=0.③
    方程③根的判别式Δ=(8m)2-4×9×(2m2-4)=-8m2+144.
    (1)当Δ>0,即-3 (2)当Δ=0,即m=±3时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l与椭圆C有两个互相重合的公共点,即直线l与椭圆C有且只有一个公共点.
    (3)当Δ<0,即m<-3或m>3时,方程③没有实数根,可知原方程组没有实数解.这时直线l与椭圆C没有公共点.
    思维升华 研究直线与椭圆位置关系的方法
    (1)研究直线和椭圆的位置关系,一般转化为研究直线方程与椭圆方程组成的方程组解的个数.
    (2)对于过定点的直线,也可以通过定点在椭圆内部或椭圆上判定直线和椭圆有交点.
    弦长及中点弦问题
    命题点1 弦长问题
    例1 斜率为1的直线l与椭圆+y2=1相交于A,B两点,则|AB|的最大值为(  )
    A.2 B. C. D.
    答案 C
    解析 设A,B两点的坐标分别为(x1,y1),(x2,y2),
    直线l的方程为y=x+t,
    由消去y,得5x2+8tx+4(t2-1)=0,
    则x1+x2=-t,x1x2=.
    ∴|AB|=|x1-x2|

    ==·,
    当t=0时,|AB|max=.
    命题点2 中点弦问题
    例2 已知P(1,1)为椭圆+=1内一定点,经过P引一条弦,使此弦被P点平分,则此弦所在的直线方程为________________.
    答案 x+2y-3=0
    解析 方法一 易知此弦所在直线的斜率存在,∴设其方程为y-1=k(x-1),弦所在的直线与椭圆相交于A,B两点,A(x1,y1),B(x2,y2).

    消去y得,(2k2+1)x2-4k(k-1)x+2(k2-2k-1)=0,
    ∴x1+x2=,又∵x1+x2=2,
    ∴=2,解得k=-.
    经检验,k=-满足题意.
    故此弦所在的直线方程为y-1=-(x-1),
    即x+2y-3=0.
    方法二 易知此弦所在直线的斜率存在,∴设斜率为k,弦所在的直线与椭圆相交于A,B两点,
    设A(x1,y1),B(x2,y2),则+=1,①
    +=1,②
    ①-②得+=0,
    ∵x1+x2=2,y1+y2=2,
    ∴+y1-y2=0,∴k==-.
    经检验,k=-满足题意.
    ∴此弦所在的直线方程为y-1=-(x-1),
    即x+2y-3=0.
    思维升华 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,应用根与系数的关系,解决相关问题.涉及中点弦的问题时用“点差法”解决,往往会更简单.记住必须检验.
    (2)设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=
    =(k为直线斜率).
    (3)利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.
    跟踪训练1 (1)已知椭圆两顶点A(-1,0),B(1,0),过焦点F(0,1)的直线l与椭圆交于C,D两点,当|CD|=时,则直线l的方程为________.
    答案 x-y+1=0或x+y-1=0.
    解析 由题意得b=1,c=1.
    ∴a2=b2+c2=1+1=2.
    ∴椭圆方程为+x2=1.
    若直线l斜率不存在时,|CD|=2,不符合题意.
    若l斜率存在时,设l的方程为y=kx+1,
    联立得(k2+2)x2+2kx-1=0.
    Δ=8(k2+1)>0恒成立.
    设C(x1,y1),D(x2,y2).
    ∴x1+x2=-,x1x2=-.
    ∴|CD|=|x1-x2|

    =.
    即=,
    解得k2=2,∴k=±.
    ∴直线l方程为x-y+1=0或x+y-1=0.
    (2)(2019·石家庄模拟)已知椭圆+=1(a>b>0),点F为左焦点,点P为下顶点,平行于FP的直线l交椭圆于A,B两点,且AB的中点为M ,则椭圆的离心率为(  )
    A. B. C. D.
    答案 A
    解析 设A(x1,y1),B(x2,y2).
    ∵AB的中点为M ,∴x1+x2=2,y1+y2=1.
    ∵PF∥l,∴kPF=kl=-=.
    ∵+=1,+=1.
    ∴+=0,
    ∴+=0,可得2bc=a2,
    ∴4c2(a2-c2)=a4,化为4e4-4e2+1=0,
    解得e2=,
    又∵0 直线与椭圆的综合问题
    例3 (2019·天津)设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的短轴长为4,离心率为.
    (1)求椭圆的方程;
    (2)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PB与x轴的交点,点N在y轴的负半轴上,若|ON|=|OF|(O为原点),且OP⊥MN,求直线PB的斜率.
    解 (1)设椭圆的半焦距为c,依题意知,2b=4,=,
    又a2=b2+c2,可得a=,b=2,c=1.
    所以,椭圆的方程为+=1.
    (2)由题意,设P(xP,yP)(xP≠0),M(xM,0).
    设直线PB的斜率为k(k≠0),又B(0,2),则直线PB的方程为y=kx+2,与椭圆方程联立整理得(4+5k2)x2+20kx=0,
    可得xP=-,
    代入y=kx+2得yP=,
    进而直线OP的斜率为=.
    在y=kx+2中,令y=0,得xM=-.
    由题意得N(0,-1),所以直线MN的斜率为-.
    由OP⊥MN,得·=-1,
    化简得k2=,从而k=±.
    所以,直线PB的斜率为或-.
    思维升华 (1)解答直线与椭圆相交的题目时,常用到“设而不求”的方法,即联立直线和椭圆的方程,消去y(或x)得一元二次方程,然后借助根与系数的关系,并结合题设条件,建立有关参变量的等量关系求解.
    (2)涉及直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.
    跟踪训练2 已知椭圆C的两个焦点分别为F1(-1,0),F2(1,0),短轴的两个端点分别为B1,B2.
    (1)若△F1B1B2为等边三角形,求椭圆C的方程;
    (2)若椭圆C的短轴长为2,过点F2的直线l与椭圆C相交于P,Q两点,且⊥,求直线l的方程.
    解 (1)由题意知,△F1B1B2为等边三角形,
    则即解得
    故椭圆C的方程为+3y2=1.
    (2)易知椭圆C的方程为+y2=1,
    当直线l的斜率不存在时,其方程为x=1,不符合题意;
    当直线l的斜率存在时,设直线l的方程为y=k(x-1),
    由得(2k2+1)x2-4k2x+2(k2-1)=0,
    Δ=8(k2+1)>0,
    设P(x1,y1),Q(x2,y2),
    则x1+x2=,x1x2=,
    =(x1+1,y1),=(x2+1,y2),
    因为⊥,所以·=0,
    即(x1+1)(x2+1)+y1y2=x1x2+(x1+x2)+1+k2(x1-1)(x2-1)=(k2+1)x1x2-(k2-1)(x1+x2)+k2+1==0,
    解得k2=,即k=±,
    故直线l的方程为x+y-1=0或x-y-1=0.


    1.若直线mx+ny=4与⊙O:x2+y2=4没有交点,则过点P(m,n)的直线与椭圆+=1的交点个数是(  )
    A.至多为1 B.2 C.1 D.0
    答案 B
    解析 由题意知,>2,即<2,
    ∴点P(m,n)在椭圆+=1的内部,
    故所求交点个数是2.
    2.直线y=kx+1,当k变化时,此直线被椭圆+y2=1截得的最大弦长是(  )
    A.2 B. C.4 D.不能确定
    答案 B
    解析 直线恒过定点(0,1),且点(0,1)在椭圆上,可设另外一个交点为(x,y),
    则弦长为==,
    当y=-时,弦长最大为.
    3.过椭圆+=1的右焦点作一条斜率为2的直线与椭圆交于A,B两点,O为坐标原点,则△OAB的面积为(  )
    A. B. C. D.
    答案 B
    解析 由题意知椭圆的右焦点F的坐标为(1,0),则直线AB的方程为y=2x-2.
    联立解得交点坐标为(0,-2),,
    不妨设A点的纵坐标yA=-2,B点的纵坐标yB=,
    ∴S△OAB=·|OF|·|yA-yB|=×1×=,
    故选B.
    4.已知椭圆+=1以及椭圆内一点P(4,2),则以P为中点的弦所在直线的斜率为(  )
    A. B.- C.2 D.-2
    答案 B
    解析 设弦所在直线的斜率为k,弦的端点A(x1,y1),B(x2,y2),
    则x1+x2=8,y1+y2=4,
    两式相减,得+=0,
    所以=-,
    所以k==-.
    经检验,k=-满足题意.
    故弦所在直线的斜率为-.故选B.
    5.已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点,若AB的中点为M(1,-1),则椭圆E的方程为(  )
    A.+=1 B.+=1 C.+=1 D.+=1
    答案 D
    解析 kAB==,kOM=-1,
    由kAB·kOM=-,得=,∴a2=2b2.
    ∵c=3,∴a2=18,b2=9,椭圆E的方程为+=1.
    6.(2019·南昌模拟)椭圆ax2+by2=1(a>0,b>0)与直线y=1-x交于A,B两点,过原点与线段AB中点的直线的斜率为,则的值为(  )
    A. B. C. D.
    答案 B
    解析 方法一 设A(x1,y1),B(x2,y2),
    则ax+by=1,ax+by=1,
    即ax-ax=-(by-by),
    则=-1,=-1,
    由题意知,=-1,
    过点与原点的直线的斜率为,
    即=,
    ∴×(-1)×=-1,
    ∴=,故选B.
    方法二 由消去y,
    得(a+b)x2-2bx+b-1=0,
    可得AB中点P的坐标为,
    ∴kOP==,∴=.
    7.直线y=kx+k+1与椭圆+=1的位置关系是________.
    答案 相交
    解析 由于直线y=kx+k+1=k(x+1)+1过定点(-1,1),而(-1,1)在椭圆内,故直线与椭圆必相交.
    8.设F1,F2为椭圆C:+=1(a>b>0)的左、右焦点,经过F1的直线交椭圆C于A,B两点,若△F2AB是面积为4的等边三角形,则椭圆C的方程为__________.
    答案 +=1
    解析 ∵△F2AB是面积为4的等边三角形,
    ∴AB⊥x轴,∴A,B两点的横坐标为-c,代入椭圆方程,
    可求得|F1A|=|F1B|=.
    又|F1F2|=2c,∠F1F2A=30°,
    ∴=×2c.①
    又 =×2c×=4,②
    a2=b2+c2,③
    由①②③解得a2=9,b2=6,c2=3,
    ∴椭圆C的方程为+=1.
    9.设F1,F2分别是椭圆+y2=1的左、右焦点,若椭圆上存在一点P,使(+)·=0(O为坐标原点),则△F1PF2的面积是________.
    答案 1
    解析 ∵(+)·=(+)·
    =·=0,
    ∴PF1⊥PF2,∠F1PF2=90°.
    设|PF1|=m,|PF2|=n,
    则m+n=4,m2+n2=12,
    ∴2mn=4,mn=2,
    ∴=mn=1.
    10.(2020·湖北部分重点中学联考)已知F1,F2是椭圆C:+=1(a>b>0)的左、右焦点,过左焦点F1的直线与椭圆C交于A,B两点,且|AF1|=3|BF1|,|AB|=|BF2|,则椭圆C的离心率为________.
    答案 
    解析 设|BF1|=k,则|AF1|=3k,|BF2|=4k.
    由|BF1|+|BF2|=|AF1|+|AF2|=2a,
    得2a=5k,|AF2|=2k.
    在△ABF2中,cos∠BAF2==,
    又在△AF1F2中,cos∠F1AF2==,
    所以2c=k,故离心率e==.
    11.已知椭圆C:+=1,过椭圆C上一点P(1,)作倾斜角互补的两条直线PA,PB,分别交椭圆C于A,B两点,则直线AB的斜率为________.
    答案 
    解析 设A(x1,y1),B(x2,y2),同时设PA的方程为y-=k(x-1),代入椭圆方程化简,得(k2+2)x2-2k(k-)x+k2-2k-2=0,显然1和x1是这个方程的两解,
    因此x1=,y1=,
    由-k代替x1,y1中的k,得
    x2=,y2=,
    所以=.
    故直线AB的斜率为.
    12.设F1,F2分别是椭圆E:+=1(a>b>0)的左、右焦点,E的离心率为,点(0,1)是E上一点.
    (1)求椭圆E的方程;
    (2)过点F1的直线交椭圆E于A,B两点,且=2,求直线BF2的方程.
    解 (1)由题意知,b=1,且e2===,
    解得a2=2,
    所以椭圆E的方程为+y2=1.
    (2)由题意知,直线AB的斜率存在且不为0,故可设直线AB的方程为x=my-1,设A(x1,y1),B(x2,y2).

    得(m2+2)y2-2my-1=0,
    则y1+y2=,①
    y1y2=-,②
    因为F1(-1,0),
    所以=(-1-x2,-y2),=(x1+1,y1),
    由=2可得,-y2=2y1,③
    由①②③可得B,
    则=或-,
    所以直线BF2的方程为x-6y-=0或x+6y-=0.


    13.(2019·全国100所名校联考)已知椭圆C:x2+=1(b>0,且b≠1)与直线l:y=x+m交于M,N两点,B为上顶点.若|BM|=|BN|,则椭圆C的离心率的取值范围是(  )
    A. B. C. D.
    答案 C
    解析 设直线y=x+m与椭圆x2+=1的交点为M(x1,y1),N(x2,y2),
    联立得(b2+1)x2+2mx+m2-b2=0,
    所以x1+x2=-,x1x2=,
    Δ=(2m)2-4(b2+1)(m2-b2)=4b2(b2+1-m2)>0.
    设线段MN的中点为G,知G点坐标为,
    因为|BM|=|BN|,所以直线BG垂直平分线段MN,
    所以直线BG的方程为y=-x+b,且经过点G,
    可得=+b,解得m=.
    因为b2+1-m2>0,所以b2+1-2>0,
    解得0 因为e2=1-b2,所以 14.(2019·衡水调研)已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),斜率为-的直线l与椭圆C交于A,B两点.若△ABF1的重心为G,则椭圆C的离心率为________.
    答案 
    解析 设A(x1,y1),B(x2,y2),
    则+=1,+=1,
    两式相减得+=0.(*)
    因为△ABF1的重心为G,
    所以故
    代入(*)式得+=0,
    所以=-=-,即a2=3b2,
    所以椭圆C的离心率e=.

    15.已知椭圆具有如下性质:若椭圆的方程为+=1(a>b>0),则椭圆在其上一点A(x0,y0)处的切线方程为+=1.试运用该性质解决以下问题,椭圆C1:+=1(a>b>0),其焦距为2,且过点,点B为C1在第一象限中的任意一点,过B作C1的切线l,l分别与x轴和y轴的正半轴交于C,D两点,则△OCD面积的最小值为(  )
    A. B. C. D.2
    答案 B
    解析 由题意可得2c=2,即c=1,a2-b2=1,
    将点代入椭圆方程,可得+=1,
    解得a=,b=1,
    即椭圆的方程为+y2=1,设B(x2,y2),
    则椭圆C1在点B处的切线方程为x+y2y=1,
    令x=0,得yD=,令y=0,可得xc=,
    所以S△OCD=··=,
    又点B为椭圆在第一象限上的点,
    所以x2>0,y2>0,+y=1,
    即有==+≥2=,
    即S△OCD≥,当且仅当=y=,
    即点B的坐标为时,△OCD面积取得最小值,故选B.
    16.已知椭圆C的两个焦点分别为F1(-,0),F2(,0),且椭圆C过点P.
    (1)求椭圆C的标准方程;
    (2)若与直线OP(O为坐标原点)平行的直线交椭圆C于A,B两点,当OA⊥OB时,求△AOB的面积.
    解 (1)设椭圆C的标准方程为+=1(a>b>0),
    由题意可得解得
    故椭圆C的标准方程为+y2=1.
    (2)直线OP的方程为y=x,设直线AB的方程为y=x+m,A(x1,y1),B(x2,y2).将直线AB的方程代入椭圆C的方程并整理得x2+mx+m2-1=0,
    由Δ=3m2-4(m2-1)>0,得m2<4,
    所以x1+x2=-m,x1x2=m2-1.
    由OA⊥OB,得·=0,·=x1x2+y1y2=x1x2+
    =x1x2+m(x1+x2)+m2=(m2-1)+m·(-m)+m2=m2-=0,得m2=.
    又|AB|==·,
    O到直线AB的距离d==,
    所以S△AOB=·|AB|·d=×××=.
    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021高考数学(理)人教A版一轮复习学案作业:第九章9.5椭 圆第2课时
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map