还剩13页未读,
继续阅读
所属成套资源:2021高考数学理科人教A版一轮复习学案作业
成套系列资料,整套一键下载
2021高考数学(理)人教A版一轮复习学案作业:第五章5.3平面向量的数量积
展开
§5.3 平面向量的数量积
最新考纲
考情考向分析
1.理解平面向量数量积的含义及其物理意义.
2.了解平面向量的数量积与向量投影的关系.
3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.
4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.
主要考查利用数量积的定义解决数量积的运算、投影、求模与夹角等问题,考查利用数量积的坐标表示求两个向量的夹角、模以及判断两个平面向量的平行与垂直关系.一般以选择题、填空题的形式考查,偶尔会在解答题中出现,属于中档题.
1.向量的夹角
已知两个非零向量a和b,作=a,=b,则∠AOB就是向量a与b的夹角,向量夹角的范围是[0,π].
2.平面向量的数量积
定义
设两个非零向量a,b的夹角为θ,则数量|a||b|·cos θ叫做a与b的数量积,记作a·b
投影
|a|cos θ叫做向量a在b方向上的投影
|b|cos θ叫做向量b在a方向上的投影
几何意义
数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积
3.向量数量积的运算律
(1)a·b=b·a.
(2)(λa)·b=λ(a·b)=a·(λb).
(3)(a+b)·c=a·c+b·c.
4.平面向量数量积的有关结论
已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.
结论
符号表示
坐标表示
模
|a|=
|a|=
夹角
cos θ=
cos θ=
a⊥b的充要条件
a·b=0
x1x2+y1y2=0
|a·b|与|a||b|的关系
|a·b|≤|a||b|
|x1x2+y1y2|≤
概念方法微思考
1.a在b方向上的投影与b在a方向上的投影相同吗?
提示 不相同.因为a在b方向上的投影为|a|cos θ,而b在a方向上的投影为|b|cos θ,其中θ为a与b的夹角.
2.两个向量的数量积大于0,则夹角一定为锐角吗?
提示 不一定.当夹角为0°时,数量积也大于0.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)向量在另一个向量方向上的投影为数量,而不是向量.( √ )
(2)由a·b=0可得a=0或b=0.( × )
(3)(a·b)c=a(b·c).( × )
(4)若a·b<0,则a和b的夹角为钝角.( × )
题组二 教材改编
2.已知向量a=(2,1),b=(-1,k),a·(2a-b)=0,则k=________.
答案 12
解析 ∵2a-b=(4,2)-(-1,k)=(5,2-k),
由a·(2a-b)=0,得(2,1)·(5,2-k)=0,
∴10+2-k=0,解得k=12.
3.已知|a|=5,|b|=4,a与b的夹角θ=120°,则向量b在向量a方向上的投影为________.
答案 -2
解析 由数量积的定义知,b在a方向上的投影为|b|cos θ=4×cos 120°=-2.
题组三 易错自纠
4.已知△ABC的三边长均为1,且=c,=a,=b,则a·b+b·c+a·c=________.
答案 -
解析 ∵〈a,b〉=〈b,c〉=〈a,c〉=120°,|a|=|b|=|c|=1,
∴a·b=b·c=a·c=1×1×cos 120°=-,
∴a·b+b·c+a·c=-.
5.已知矩形ABCD中,||=6,||=4,若点M,N满足=3,=2,则·等于( )
A.20 B.15 C.9 D.6
答案 C
解析 因为ABCD为矩形,建系如图.A(0,0),M(6,3),N(4,4).
则=(6,3),=(2,-1),
·=6×2-3×1=9.
6.已知向量a,b的夹角为60°,|a|=2,|b|=1,则|a+2b|=________.
答案 2
解析 方法一 |a+2b|==
===2.
方法二 (数形结合法)
由|a|=|2b|=2知,以a与2b为邻边可作出边长为2的菱形OACB,如图,则|a+2b|=||.
又∠AOB=60°,所以|a+2b|=2.
平面向量数量积的基本运算
例1 如图,在梯形ABCD中,AB∥CD,CD=2,∠BAD=,若·=2·,则·=________.
答案 12
解析 方法一 (几何法)
因为·=2·,
所以·-·=·,
所以·=·,
因为AB∥CD,CD=2,∠BAD=,
所以2||=||·||cos ,
化简得||=2.
故·=·(+)=||2+·
=(2)2+2×2cos =12.
方法二 (坐标法)如图,建立平面直角坐标系xAy.
依题意,可设点D(m,m),C(m+2,m),B(n,0),其中m>0,n>0,
则由·=2·,
得(n,0)·(m+2,m)=2(n,0)·(m,m),
所以n(m+2)=2nm,化简得m=2.
故·=(m,m)·(m+2,m)=2m2+2m=12.
思维升华 平面向量数量积的三种运算方法
(1)当已知向量的模和夹角时,可利用定义法求解,即a·b=|a||b|cos〈a,b〉.
(2)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.
(3)利用数量积的几何意义求解.
跟踪训练1 (1)在正三角形ABC中,D是BC上的点,若AB=3,BD=1,则·=________.
答案
解析 如图所示,·=·(+)=9+3×cos 120°=.
(2)已知梯形ABCD中,AB∥CD,AB=2CD,且∠DAB=90°,AB=2,AD=1,若点Q满足=2,则·等于( )
A.- B. C.- D.
答案 D
解析 以A为坐标原点,AB所在直线为x轴,AD所在直线为y轴,建立平面直角坐标系,如图所示,
则B(2,0),C(1,1),D(0,1),
又=2,∴Q,
∴=,=,
∴·=+1=.故选D.
平面向量数量积的应用
命题点1 求向量的模
例2 (1)(2020·遵义统考)已知两个单位向量a和b的夹角为120°,k∈R,则|ka+b|的最小值为( )
A. B. C.1 D.
答案 B
解析 |ka+b|2=k2a2+2ka·b+b2
因为a和b是单位向量,且夹角为120°,
所以|ka+b|2=k2a2+2ka·b+b2
=k2|a|2+2k|a||b|cos〈a,b〉+|b|2
=k2-k+1
=2+≥,
所以|ka+b|≥,
所以|ka+b|的最小值为.
(2)(2020·四川双流中学诊断)如图,在△ABC中,M为BC的中点,若AB=1,AC=3,与的夹角为60°,则||=________.
答案
解析 ∵M为BC的中点,
∴=(+),
∴||2=(+)2
=(||2+||2+2·)
=(1+9+2×1×3cos 60°)=,
∴||=.
命题点2 求向量的夹角
例3 (1)(2020·昆明一中检测)已知向量a=,|b|=2,且a·b=1,则a与b的夹角为( )
A.30° B.45° C.60° D.90°
答案 C
解析 |a|==1,
∴cos〈a,b〉==,
∴a与b的夹角为60°.
(2)已知e1,e2是互相垂直的单位向量.若e1-e2与e1+λe2的夹角为60°,则实数λ的值是________.
答案
解析 由题意知|e1|=|e2|=1,e1·e2=0,
|e1-e2|=
=
==2.
同理|e1+λe2|=.
所以cos 60°=
=
==,
解得λ=.
思维升华 (1)求解平面向量模的方法
①利用公式|a|=.
②利用|a|=.
(2)求平面向量的夹角的方法
①定义法:cos θ=,θ的取值范围为[0,π].
②坐标法:若a=(x1,y1),b=(x2,y2),则cos θ=.
③解三角形法:把两向量的夹角放到三角形中.
跟踪训练2 (1)(2019·江西省临川一中模拟)已知向量a=(3,4),b=(-1,k),且a⊥b,则a+4b与a的夹角为________.
答案
解析 因为a⊥b,故a·b=0,所以-3+4k=0,
故k=,故a+4b=(-1,7),
设a+4b与a的夹角为θ,
则cos θ===,
因θ∈[0,π],故θ=.
(2)(2019·日照模拟) 已知向量a,b,c满足|a|=4,|b|=2,〈a,b〉=,(c-a)·(c-b)=-1,则|c-a|的最大值为________.
答案 +1
解析 设=a,=b,=c,以OA所在的直线为x轴,O为坐标原点建立平面直角坐标系(图略),
∵|a|=4,|b|=2,a与b的夹角为,
则A(4,0),B(2,2),设C(x,y),
∵(c-a)·(c-b)=-1,∴x2+y2-6x-2y+9=0,
即(x-3)2+(y-1)2=1,所以点C在以(3,1)为圆心,1为半径的圆上,|c-a|表示点A,C的距离,即圆上的点与A(4,0)的距离,因为圆心到A的距离为,
所以|c-a|的最大值为+1.
平面向量与三角函数、解三角形
例4 (2019·石家庄模拟)已知向量a=(sin x,cos x),b=(cos x,cos x),f (x)=a·b.
(1)求函数f (x)=a·b的最小正周期;
(2)在△ABC中,BC=,sin B=3sin C,若f (A)=1,求△ABC的周长.
解 (1)f (x)=sin xcos x+cos2x
=sin 2x+cos 2x+,
f (x)=sin+,
所以f (x)的最小正周期T==π.
(2)由题意可得sin=,
又0 所以2A+=,故A=.
设角A,B,C的对边分别为a,b,c,则a2=b2+c2-2bccos A.
所以a2=b2+c2-bc=7,
又sin B=3sin C,所以b=3c.
故7=9c2+c2-3c2,解得c=1.
所以b=3,△ABC的周长为4+.
思维升华 平面向量与三角函数的综合问题的解题思路
(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.
(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.
跟踪训练3 在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,已知向量m=,n=(c,b-2a),且m·n=0.
(1)求∠C的大小;
(2)若点D为边AB上一点,且满足=,||=,c=2,求△ABC的面积.
解 (1)因为m=(cos B,cos C),n=(c,b-2a),m·n=0,
所以ccos B+(b-2a)cos C=0,
在△ABC中,由正弦定理得,
sin Ccos B+(sin B-2sin A)cos C=0,
sin A=2sin Acos C,
又sin A≠0,
所以cos C=,而C∈(0,π),所以∠C=.
(2)由=知,-=-,
所以2=+,
两边平方得4||2=b2+a2+2bacos∠ACB=b2+a2+ba=28.①
又c2=a2+b2-2abcos∠ACB,
所以a2+b2-ab=12.②
由①②得ab=8,
所以S△ABC=absin∠ACB=2.
1.(2020·江西省临川第一中学模拟)已知向量a=(2,1),b=(m,-1),且a⊥(a-b),则m的值为( )
A.1 B.3 C.1或3 D.4
答案 B
解析 因为a=(2,1),b=(m,-1),
所以a-b=(2-m,2),
因为a⊥(a-b),则a·(a-b)=2(2-m)+2=0,
解得m=3.故选B.
2.(2019·全国Ⅱ)已知=(2,3),=(3,t),||=1,则·等于( )
A.-3 B.-2 C.2 D.3
答案 C
解析 因为=-=(1,t-3),所以||==1,解得t=3,所以=(1,0),所以·=2×1+3×0=2,故选C.
3.(2019·拉萨模拟)已知向量a,b的夹角为,且a=(2,-1),|b|=2,则|a+2b|等于( )
A.2 B.3 C. D.
答案 C
解析 由已知|a|==,
a·b=|a||b|cos =0,
∴|a+2b|2=(a+2b)2=a2+4a·b+4b2
=()2+4×22=21,
∴|a+2b|=.故选C.
4.(2019·湖南省桃江县第一中学模拟)已知向量a,b满足|a|=,|b|=1,且|b+a|=2,则向量a与b的夹角的余弦值为( )
A. B. C. D.
答案 D
解析 由题意可知,|b+a|2=b2+2a·b+a2=3+2a·b=4,解得a·b=,∴cos〈a,b〉===,故选D.
5.(2020·东莞模拟)已知非零向量m,n满足|n|=4|m|,且m⊥(2m+n),则m,n的夹角为( )
A. B. C. D.
答案 D
解析 ∵|n|=4|m|,且m⊥(2m+n),
∴m·(2m+n)=2m2+m·n=2|m|2+|m||n|cos〈m,n〉=0,
且|m|≠0,|n|≠0,
∴2|m|+|n|cos〈m,n〉=0,
∴cos〈m,n〉=-=-,
又0≤〈m,n〉≤π,∴〈m,n〉=.故选D.
6.(2019·衡水质检)已知两个单位向量e1,e2的夹角为θ,则下列结论不正确的是( )
A.不存在θ,使e1·e2=
B.e=e
C.(e1-e2)⊥(e1+e2)
D.e1在e2方向上的投影为sin θ
答案 D
解析 对于A,因为两个单位向量e1,e2,有e1·e2=1×1×cos θ=cos θ≤1,所以A正确;对于B,因为两个单位向量e1,e2,有e=e=1,所以B正确;对于C,因为两个单位向量e1,e2,有(e1-e2)·(e1+e2)=e-e=0 ,所以(e1-e2)⊥(e1+e2),所以C正确;对于D,因为两个单位向量e1,e2,e1 在e2方向上的投影为|e1|cos θ=cos θ,所以D错误.故选D.
7.(2019·景德镇模拟)已知两个单位向量a,b的夹角为30°,c=ma+(1-m)b,b·c=0,则m=________.
答案 4+2
解析 b·c=b·[ma+(1-m)b]=ma·b+(1-m)b2
=m|a||b|cos 30°+(1-m)|b|2=m+1-m=0,
所以m=4+2.
8.(2019·攀枝花联考)在四边形ABCD中,=,=(2,4),=(-3,-5),则在上的投影为________.
答案
解析 由=得四边形ABCD是平行四边形,
且=+=(2,4)+(-3,-5)=(-1,-1),
则=+=(2,4)+(-1,-1)=(1,3),
∴在上的投影为
||cos〈,〉===.
9.(2019·天津模拟)已知菱形ABCD的边长为2,∠ABC=60°,点E,F分别在边AD,DC上,=(+),=,则·=________.
答案
解析 连接AC,BD交于点O,以O为原点,以,的方向分别为x轴、y轴的正方向建立直角坐标系,如图所示,
∵菱形边长为2,∠ABC=60°,
∴A(-1,0),B(0,-),C(1,0),D(0,),
∵=(+),
∴E为AD的中点,∴E,
∵=,∴F ,
∴=,=,
∴·=-+=.
10.(2020·天津市北辰区模拟)在平行四边形ABCD中,AB=4,·=4,点P在边CD上,则·的取值范围是________.
答案
解析 因为点P在边CD上,
所以设=λ=λ(0≤λ≤1),
则=+=+λ,=(1-λ),
所以·=(+λ)·(1-λ)
=4(1-λ)+λ(1-λ)×16=-16λ2+12λ+4
=-2+,
又0≤λ≤1,所以0≤·≤.
11.已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61.
(1)求a与b的夹角θ;
(2)求|a+b|;
(3)若=a,=b,求△ABC的面积.
解 (1)因为(2a-3b)·(2a+b)=61,
所以4|a|2-4a·b-3|b|2=61.
又|a|=4,|b|=3,所以64-4a·b-27=61,
所以a·b=-6,所以cos θ===-.
又0≤θ≤π,所以θ=.
(2)|a+b|2=(a+b)2=|a|2+2a·b+|b|2
=42+2×(-6)+32=13,
所以|a+b|=.
(3)因为与的夹角θ=,
所以∠ABC=π-=.
又||=|a|=4,||=|b|=3,
所以S△ABC=||||·sin∠ABC
=×4×3×=3.
12.已知向量a=(cos x,sin x),b=(3,-),x∈[0,π].
(1)若a∥b,求x的值;
(2)记f (x)=a·b,求f (x)的最大值和最小值以及对应的x的值.
解 (1)因为a=(cos x,sin x),b=(3,-),a∥b,所以-cos x=3sin x.
若cos x=0,则sin x=0,与sin2x+cos2x=1矛盾,
故cos x≠0,于是tan x=-.
又x∈[0,π],所以x=.
(2)f (x)=a·b=(cos x,sin x)·(3,-)
=3cos x-sin x=2cos.
因为x∈[0,π],所以x+∈,
从而-1≤cos≤.
于是,当x+=,即x=0时,f (x)取得最大值3;
当x+=π,即x=时,f (x)取得最小值-2.
13.(2020·衡阳模拟)在△ABC中,∠A=120°,·=-3,点G是△ABC的重心,则||的最小值是( )
A. B. C. D.
答案 B
解析 设BC的中点为D,
因为点G是△ABC的重心,
所以==×(+)=(+),
再令||=c,||=b,
则·=bccos 120°=-3,所以bc=6,
所以||2=(||2+2·+||2)
=(c2+b2-6)≥(2bc-6)=,
所以||≥,
当且仅当b=c=时取等号,故选B.
14.(2018·天津)如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则·的最小值为( )
A. B.
C. D.3
答案 A
解析 如图,以D为坐标原点,DA,DC所在直线分别为x轴,y轴,建立平面直角坐标系.
连接AC,由题意知∠CAD=∠CAB=60°,∠ACD=∠ACB=30°,
则D(0,0),A(1,0),B,C(0,).
设E(0,y)(0≤y≤),
则=(-1,y),=,
∴·=+y2-y=2+(0≤y≤),
∴当y=时,·有最小值.故选A.
15.若向量a,b,c满足a≠b,c≠0,且(c-a)·(c-b)=0,则的最小值是( )
A. B.2 C.2 D.
答案 C
解析 设向量a=,b=,c=,
则由(c-a)·(c-b)=0得·=0,
即C的轨迹为以AB为直径的圆,圆心为AB的中点M,半径为||,
因此|c|=||≤||+r=|+|+||
=|+|+|-|
=|a+b|+|a-b|,
从而≥2,故选C.
16.在如图所示的平面直角坐标系中,已知点A(1,0)和点B(-1,0),||=1,且∠AOC=θ,其中O为坐标原点.
(1)若θ=,设点D为线段OA上的动点,求|+|的最小值;
(2)若θ∈,向量m=,n=(1-cos θ,sin θ-2cos θ),求m·n的最小值及对应的θ值.
解 (1)设D(t,0)(0≤t≤1),
由题意知C,
所以+=,
所以|+|2=2+,
所以当t=时,|+|最小,最小值为.
(2)由题意得C(cos θ,sin θ),m==(cos θ+1,sin θ),
则m·n=1-cos2θ+sin2θ-2sin θcos θ
=1-cos 2θ-sin 2θ=1-sin,
因为θ∈,所以≤2θ+≤,
所以当2θ+=,即θ=时,sin取得最大值1,即m·n取得最小值1-.
所以m·n的最小值为1-,此时θ=.
最新考纲
考情考向分析
1.理解平面向量数量积的含义及其物理意义.
2.了解平面向量的数量积与向量投影的关系.
3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.
4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.
主要考查利用数量积的定义解决数量积的运算、投影、求模与夹角等问题,考查利用数量积的坐标表示求两个向量的夹角、模以及判断两个平面向量的平行与垂直关系.一般以选择题、填空题的形式考查,偶尔会在解答题中出现,属于中档题.
1.向量的夹角
已知两个非零向量a和b,作=a,=b,则∠AOB就是向量a与b的夹角,向量夹角的范围是[0,π].
2.平面向量的数量积
定义
设两个非零向量a,b的夹角为θ,则数量|a||b|·cos θ叫做a与b的数量积,记作a·b
投影
|a|cos θ叫做向量a在b方向上的投影
|b|cos θ叫做向量b在a方向上的投影
几何意义
数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积
3.向量数量积的运算律
(1)a·b=b·a.
(2)(λa)·b=λ(a·b)=a·(λb).
(3)(a+b)·c=a·c+b·c.
4.平面向量数量积的有关结论
已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.
结论
符号表示
坐标表示
模
|a|=
|a|=
夹角
cos θ=
cos θ=
a⊥b的充要条件
a·b=0
x1x2+y1y2=0
|a·b|与|a||b|的关系
|a·b|≤|a||b|
|x1x2+y1y2|≤
概念方法微思考
1.a在b方向上的投影与b在a方向上的投影相同吗?
提示 不相同.因为a在b方向上的投影为|a|cos θ,而b在a方向上的投影为|b|cos θ,其中θ为a与b的夹角.
2.两个向量的数量积大于0,则夹角一定为锐角吗?
提示 不一定.当夹角为0°时,数量积也大于0.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)向量在另一个向量方向上的投影为数量,而不是向量.( √ )
(2)由a·b=0可得a=0或b=0.( × )
(3)(a·b)c=a(b·c).( × )
(4)若a·b<0,则a和b的夹角为钝角.( × )
题组二 教材改编
2.已知向量a=(2,1),b=(-1,k),a·(2a-b)=0,则k=________.
答案 12
解析 ∵2a-b=(4,2)-(-1,k)=(5,2-k),
由a·(2a-b)=0,得(2,1)·(5,2-k)=0,
∴10+2-k=0,解得k=12.
3.已知|a|=5,|b|=4,a与b的夹角θ=120°,则向量b在向量a方向上的投影为________.
答案 -2
解析 由数量积的定义知,b在a方向上的投影为|b|cos θ=4×cos 120°=-2.
题组三 易错自纠
4.已知△ABC的三边长均为1,且=c,=a,=b,则a·b+b·c+a·c=________.
答案 -
解析 ∵〈a,b〉=〈b,c〉=〈a,c〉=120°,|a|=|b|=|c|=1,
∴a·b=b·c=a·c=1×1×cos 120°=-,
∴a·b+b·c+a·c=-.
5.已知矩形ABCD中,||=6,||=4,若点M,N满足=3,=2,则·等于( )
A.20 B.15 C.9 D.6
答案 C
解析 因为ABCD为矩形,建系如图.A(0,0),M(6,3),N(4,4).
则=(6,3),=(2,-1),
·=6×2-3×1=9.
6.已知向量a,b的夹角为60°,|a|=2,|b|=1,则|a+2b|=________.
答案 2
解析 方法一 |a+2b|==
===2.
方法二 (数形结合法)
由|a|=|2b|=2知,以a与2b为邻边可作出边长为2的菱形OACB,如图,则|a+2b|=||.
又∠AOB=60°,所以|a+2b|=2.
平面向量数量积的基本运算
例1 如图,在梯形ABCD中,AB∥CD,CD=2,∠BAD=,若·=2·,则·=________.
答案 12
解析 方法一 (几何法)
因为·=2·,
所以·-·=·,
所以·=·,
因为AB∥CD,CD=2,∠BAD=,
所以2||=||·||cos ,
化简得||=2.
故·=·(+)=||2+·
=(2)2+2×2cos =12.
方法二 (坐标法)如图,建立平面直角坐标系xAy.
依题意,可设点D(m,m),C(m+2,m),B(n,0),其中m>0,n>0,
则由·=2·,
得(n,0)·(m+2,m)=2(n,0)·(m,m),
所以n(m+2)=2nm,化简得m=2.
故·=(m,m)·(m+2,m)=2m2+2m=12.
思维升华 平面向量数量积的三种运算方法
(1)当已知向量的模和夹角时,可利用定义法求解,即a·b=|a||b|cos〈a,b〉.
(2)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.
(3)利用数量积的几何意义求解.
跟踪训练1 (1)在正三角形ABC中,D是BC上的点,若AB=3,BD=1,则·=________.
答案
解析 如图所示,·=·(+)=9+3×cos 120°=.
(2)已知梯形ABCD中,AB∥CD,AB=2CD,且∠DAB=90°,AB=2,AD=1,若点Q满足=2,则·等于( )
A.- B. C.- D.
答案 D
解析 以A为坐标原点,AB所在直线为x轴,AD所在直线为y轴,建立平面直角坐标系,如图所示,
则B(2,0),C(1,1),D(0,1),
又=2,∴Q,
∴=,=,
∴·=+1=.故选D.
平面向量数量积的应用
命题点1 求向量的模
例2 (1)(2020·遵义统考)已知两个单位向量a和b的夹角为120°,k∈R,则|ka+b|的最小值为( )
A. B. C.1 D.
答案 B
解析 |ka+b|2=k2a2+2ka·b+b2
因为a和b是单位向量,且夹角为120°,
所以|ka+b|2=k2a2+2ka·b+b2
=k2|a|2+2k|a||b|cos〈a,b〉+|b|2
=k2-k+1
=2+≥,
所以|ka+b|≥,
所以|ka+b|的最小值为.
(2)(2020·四川双流中学诊断)如图,在△ABC中,M为BC的中点,若AB=1,AC=3,与的夹角为60°,则||=________.
答案
解析 ∵M为BC的中点,
∴=(+),
∴||2=(+)2
=(||2+||2+2·)
=(1+9+2×1×3cos 60°)=,
∴||=.
命题点2 求向量的夹角
例3 (1)(2020·昆明一中检测)已知向量a=,|b|=2,且a·b=1,则a与b的夹角为( )
A.30° B.45° C.60° D.90°
答案 C
解析 |a|==1,
∴cos〈a,b〉==,
∴a与b的夹角为60°.
(2)已知e1,e2是互相垂直的单位向量.若e1-e2与e1+λe2的夹角为60°,则实数λ的值是________.
答案
解析 由题意知|e1|=|e2|=1,e1·e2=0,
|e1-e2|=
=
==2.
同理|e1+λe2|=.
所以cos 60°=
=
==,
解得λ=.
思维升华 (1)求解平面向量模的方法
①利用公式|a|=.
②利用|a|=.
(2)求平面向量的夹角的方法
①定义法:cos θ=,θ的取值范围为[0,π].
②坐标法:若a=(x1,y1),b=(x2,y2),则cos θ=.
③解三角形法:把两向量的夹角放到三角形中.
跟踪训练2 (1)(2019·江西省临川一中模拟)已知向量a=(3,4),b=(-1,k),且a⊥b,则a+4b与a的夹角为________.
答案
解析 因为a⊥b,故a·b=0,所以-3+4k=0,
故k=,故a+4b=(-1,7),
设a+4b与a的夹角为θ,
则cos θ===,
因θ∈[0,π],故θ=.
(2)(2019·日照模拟) 已知向量a,b,c满足|a|=4,|b|=2,〈a,b〉=,(c-a)·(c-b)=-1,则|c-a|的最大值为________.
答案 +1
解析 设=a,=b,=c,以OA所在的直线为x轴,O为坐标原点建立平面直角坐标系(图略),
∵|a|=4,|b|=2,a与b的夹角为,
则A(4,0),B(2,2),设C(x,y),
∵(c-a)·(c-b)=-1,∴x2+y2-6x-2y+9=0,
即(x-3)2+(y-1)2=1,所以点C在以(3,1)为圆心,1为半径的圆上,|c-a|表示点A,C的距离,即圆上的点与A(4,0)的距离,因为圆心到A的距离为,
所以|c-a|的最大值为+1.
平面向量与三角函数、解三角形
例4 (2019·石家庄模拟)已知向量a=(sin x,cos x),b=(cos x,cos x),f (x)=a·b.
(1)求函数f (x)=a·b的最小正周期;
(2)在△ABC中,BC=,sin B=3sin C,若f (A)=1,求△ABC的周长.
解 (1)f (x)=sin xcos x+cos2x
=sin 2x+cos 2x+,
f (x)=sin+,
所以f (x)的最小正周期T==π.
(2)由题意可得sin=,
又0 所以2A+=,故A=.
设角A,B,C的对边分别为a,b,c,则a2=b2+c2-2bccos A.
所以a2=b2+c2-bc=7,
又sin B=3sin C,所以b=3c.
故7=9c2+c2-3c2,解得c=1.
所以b=3,△ABC的周长为4+.
思维升华 平面向量与三角函数的综合问题的解题思路
(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.
(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.
跟踪训练3 在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,已知向量m=,n=(c,b-2a),且m·n=0.
(1)求∠C的大小;
(2)若点D为边AB上一点,且满足=,||=,c=2,求△ABC的面积.
解 (1)因为m=(cos B,cos C),n=(c,b-2a),m·n=0,
所以ccos B+(b-2a)cos C=0,
在△ABC中,由正弦定理得,
sin Ccos B+(sin B-2sin A)cos C=0,
sin A=2sin Acos C,
又sin A≠0,
所以cos C=,而C∈(0,π),所以∠C=.
(2)由=知,-=-,
所以2=+,
两边平方得4||2=b2+a2+2bacos∠ACB=b2+a2+ba=28.①
又c2=a2+b2-2abcos∠ACB,
所以a2+b2-ab=12.②
由①②得ab=8,
所以S△ABC=absin∠ACB=2.
1.(2020·江西省临川第一中学模拟)已知向量a=(2,1),b=(m,-1),且a⊥(a-b),则m的值为( )
A.1 B.3 C.1或3 D.4
答案 B
解析 因为a=(2,1),b=(m,-1),
所以a-b=(2-m,2),
因为a⊥(a-b),则a·(a-b)=2(2-m)+2=0,
解得m=3.故选B.
2.(2019·全国Ⅱ)已知=(2,3),=(3,t),||=1,则·等于( )
A.-3 B.-2 C.2 D.3
答案 C
解析 因为=-=(1,t-3),所以||==1,解得t=3,所以=(1,0),所以·=2×1+3×0=2,故选C.
3.(2019·拉萨模拟)已知向量a,b的夹角为,且a=(2,-1),|b|=2,则|a+2b|等于( )
A.2 B.3 C. D.
答案 C
解析 由已知|a|==,
a·b=|a||b|cos =0,
∴|a+2b|2=(a+2b)2=a2+4a·b+4b2
=()2+4×22=21,
∴|a+2b|=.故选C.
4.(2019·湖南省桃江县第一中学模拟)已知向量a,b满足|a|=,|b|=1,且|b+a|=2,则向量a与b的夹角的余弦值为( )
A. B. C. D.
答案 D
解析 由题意可知,|b+a|2=b2+2a·b+a2=3+2a·b=4,解得a·b=,∴cos〈a,b〉===,故选D.
5.(2020·东莞模拟)已知非零向量m,n满足|n|=4|m|,且m⊥(2m+n),则m,n的夹角为( )
A. B. C. D.
答案 D
解析 ∵|n|=4|m|,且m⊥(2m+n),
∴m·(2m+n)=2m2+m·n=2|m|2+|m||n|cos〈m,n〉=0,
且|m|≠0,|n|≠0,
∴2|m|+|n|cos〈m,n〉=0,
∴cos〈m,n〉=-=-,
又0≤〈m,n〉≤π,∴〈m,n〉=.故选D.
6.(2019·衡水质检)已知两个单位向量e1,e2的夹角为θ,则下列结论不正确的是( )
A.不存在θ,使e1·e2=
B.e=e
C.(e1-e2)⊥(e1+e2)
D.e1在e2方向上的投影为sin θ
答案 D
解析 对于A,因为两个单位向量e1,e2,有e1·e2=1×1×cos θ=cos θ≤1,所以A正确;对于B,因为两个单位向量e1,e2,有e=e=1,所以B正确;对于C,因为两个单位向量e1,e2,有(e1-e2)·(e1+e2)=e-e=0 ,所以(e1-e2)⊥(e1+e2),所以C正确;对于D,因为两个单位向量e1,e2,e1 在e2方向上的投影为|e1|cos θ=cos θ,所以D错误.故选D.
7.(2019·景德镇模拟)已知两个单位向量a,b的夹角为30°,c=ma+(1-m)b,b·c=0,则m=________.
答案 4+2
解析 b·c=b·[ma+(1-m)b]=ma·b+(1-m)b2
=m|a||b|cos 30°+(1-m)|b|2=m+1-m=0,
所以m=4+2.
8.(2019·攀枝花联考)在四边形ABCD中,=,=(2,4),=(-3,-5),则在上的投影为________.
答案
解析 由=得四边形ABCD是平行四边形,
且=+=(2,4)+(-3,-5)=(-1,-1),
则=+=(2,4)+(-1,-1)=(1,3),
∴在上的投影为
||cos〈,〉===.
9.(2019·天津模拟)已知菱形ABCD的边长为2,∠ABC=60°,点E,F分别在边AD,DC上,=(+),=,则·=________.
答案
解析 连接AC,BD交于点O,以O为原点,以,的方向分别为x轴、y轴的正方向建立直角坐标系,如图所示,
∵菱形边长为2,∠ABC=60°,
∴A(-1,0),B(0,-),C(1,0),D(0,),
∵=(+),
∴E为AD的中点,∴E,
∵=,∴F ,
∴=,=,
∴·=-+=.
10.(2020·天津市北辰区模拟)在平行四边形ABCD中,AB=4,·=4,点P在边CD上,则·的取值范围是________.
答案
解析 因为点P在边CD上,
所以设=λ=λ(0≤λ≤1),
则=+=+λ,=(1-λ),
所以·=(+λ)·(1-λ)
=4(1-λ)+λ(1-λ)×16=-16λ2+12λ+4
=-2+,
又0≤λ≤1,所以0≤·≤.
11.已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61.
(1)求a与b的夹角θ;
(2)求|a+b|;
(3)若=a,=b,求△ABC的面积.
解 (1)因为(2a-3b)·(2a+b)=61,
所以4|a|2-4a·b-3|b|2=61.
又|a|=4,|b|=3,所以64-4a·b-27=61,
所以a·b=-6,所以cos θ===-.
又0≤θ≤π,所以θ=.
(2)|a+b|2=(a+b)2=|a|2+2a·b+|b|2
=42+2×(-6)+32=13,
所以|a+b|=.
(3)因为与的夹角θ=,
所以∠ABC=π-=.
又||=|a|=4,||=|b|=3,
所以S△ABC=||||·sin∠ABC
=×4×3×=3.
12.已知向量a=(cos x,sin x),b=(3,-),x∈[0,π].
(1)若a∥b,求x的值;
(2)记f (x)=a·b,求f (x)的最大值和最小值以及对应的x的值.
解 (1)因为a=(cos x,sin x),b=(3,-),a∥b,所以-cos x=3sin x.
若cos x=0,则sin x=0,与sin2x+cos2x=1矛盾,
故cos x≠0,于是tan x=-.
又x∈[0,π],所以x=.
(2)f (x)=a·b=(cos x,sin x)·(3,-)
=3cos x-sin x=2cos.
因为x∈[0,π],所以x+∈,
从而-1≤cos≤.
于是,当x+=,即x=0时,f (x)取得最大值3;
当x+=π,即x=时,f (x)取得最小值-2.
13.(2020·衡阳模拟)在△ABC中,∠A=120°,·=-3,点G是△ABC的重心,则||的最小值是( )
A. B. C. D.
答案 B
解析 设BC的中点为D,
因为点G是△ABC的重心,
所以==×(+)=(+),
再令||=c,||=b,
则·=bccos 120°=-3,所以bc=6,
所以||2=(||2+2·+||2)
=(c2+b2-6)≥(2bc-6)=,
所以||≥,
当且仅当b=c=时取等号,故选B.
14.(2018·天津)如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则·的最小值为( )
A. B.
C. D.3
答案 A
解析 如图,以D为坐标原点,DA,DC所在直线分别为x轴,y轴,建立平面直角坐标系.
连接AC,由题意知∠CAD=∠CAB=60°,∠ACD=∠ACB=30°,
则D(0,0),A(1,0),B,C(0,).
设E(0,y)(0≤y≤),
则=(-1,y),=,
∴·=+y2-y=2+(0≤y≤),
∴当y=时,·有最小值.故选A.
15.若向量a,b,c满足a≠b,c≠0,且(c-a)·(c-b)=0,则的最小值是( )
A. B.2 C.2 D.
答案 C
解析 设向量a=,b=,c=,
则由(c-a)·(c-b)=0得·=0,
即C的轨迹为以AB为直径的圆,圆心为AB的中点M,半径为||,
因此|c|=||≤||+r=|+|+||
=|+|+|-|
=|a+b|+|a-b|,
从而≥2,故选C.
16.在如图所示的平面直角坐标系中,已知点A(1,0)和点B(-1,0),||=1,且∠AOC=θ,其中O为坐标原点.
(1)若θ=,设点D为线段OA上的动点,求|+|的最小值;
(2)若θ∈,向量m=,n=(1-cos θ,sin θ-2cos θ),求m·n的最小值及对应的θ值.
解 (1)设D(t,0)(0≤t≤1),
由题意知C,
所以+=,
所以|+|2=2+,
所以当t=时,|+|最小,最小值为.
(2)由题意得C(cos θ,sin θ),m==(cos θ+1,sin θ),
则m·n=1-cos2θ+sin2θ-2sin θcos θ
=1-cos 2θ-sin 2θ=1-sin,
因为θ∈,所以≤2θ+≤,
所以当2θ+=,即θ=时,sin取得最大值1,即m·n取得最小值1-.
所以m·n的最小值为1-,此时θ=.
相关资料
更多