还剩15页未读,
继续阅读
所属成套资源:2020版物理新增分大一轮新高考讲义(京津鲁琼)
成套系列资料,整套一键下载
2020版物理新增分大一轮新高考(京津鲁琼)讲义:第四章曲线运动万有引力与航天专题强化五
展开
专题强化五 天体运动的“三类热点”问题
专题解读 1.本专题是万有引力定律在天体运行中的特殊运用,同步卫星是与地球表面相对静止的卫星;而双星或多星模型有可能没有中心天体,近年来常以选择题形式在高考题中出现.
2.学好本专题有助于学生更加灵活地应用万有引力定律,加深对力和运动关系的理解.
3.需要用到的知识:牛顿第二定律、万有引力定律、圆周运动规律等.
一、卫星的轨道
1.赤道轨道:卫星的轨道在赤道平面内,同步卫星就是其中的一种.
2.极地轨道:卫星的轨道过南、北两极,即在垂直于赤道的平面内,如极地气象卫星.
3.其他轨道:除以上两种轨道外的卫星轨道.
所有卫星的轨道平面一定通过地球的球心.
自测1 (多选)可以发射一颗这样的人造地球卫星,使其圆轨道( )
A.与地球表面上某一纬线(非赤道)是共面同心圆
B.与地球表面上某一经线所决定的圆是共面同心圆
C.与地球表面上的赤道线是共面同心圆,且卫星相对地球表面是静止的
D.与地球表面上的赤道线是共面同心圆,但卫星相对地球表面是运动的
答案 CD
解析 人造地球卫星运行时,由于地球对卫星的引力提供它做圆周运动的向心力,而这个力的方向必定指向圆心,即指向地心,也就是说人造地球卫星所在轨道圆的圆心一定要和地球的中心重合,不可能是地轴上(除地心外)的某一点,故A错误;由于地球同时绕着地轴在自转,所以卫星的轨道平面也不可能和经线所决定的平面共面,所以B错误;相对地球表面静止的卫星就是地球的同步卫星,它必须在赤道平面内,且距地面有确定的高度,这个高度约为三万六千千米,而低于或高于这个轨道的卫星也可以在赤道平面内运动,不过由于它们公转的周期和地球自转周期不同,就会相对于地面运动,C、D正确.
二、地球同步卫星的特点
相对于地面静止且与地球自转具有相同周期的卫星叫地球同步卫星.同步卫星有以下“七个一定”的特点:
(1)轨道平面一定:轨道平面与赤道平面共面.
(2)周期一定:与地球自转周期相同,即T=24 h.
(3)角速度一定:与地球自转的角速度相同.
(4)高度一定:由G=m(R+h)得地球同步卫星离地面的高度h=-R≈3.6×107 m.
(5)速率一定:v=≈3.1×103 m/s.
(6)向心加速度一定:由G=man得an==gh=0.23 m/s2,即同步卫星的向心加速度等于轨道处的重力加速度.
(7)绕行方向一定:运行方向与地球自转方向一致.
自测2 (2018·河南省鹤壁市第二次段考)已知某行星半径为R,以第一宇宙速度围绕该行星运行的卫星的绕行周期为T,围绕该行星运动的同步卫星运行速率为v,则该行星的自转周期为( )
A. B. C. D.
答案 A
解析 设同步卫星距地面的高度为h,则=m,以第一宇宙速度运行的卫星的轨道半径为R,=m2R,联立解得h=-R,行星的自转周期等于同步卫星运转周期T==,A选项正确,B、C、D选项错误.
三、卫星变轨
1.当卫星的速度突然增大时,G
2.当卫星的速度突然减小时,G>m,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小.当卫星进入新的轨道稳定运行时,由v=可知其运行速度比原轨道运行时的大,但重力势能、机械能均减小.
自测3 (2018·安徽省江南十校冲刺联考)现对于发射地球同步卫星的过程分析,如图1所示,卫星首先进入椭圆轨道Ⅰ,P点是轨道Ⅰ上的近地点,然后在Q点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则( )
图1
A.卫星在同步轨道Ⅱ上的运行速度大于第一宇宙速度7.9 km/s
B.该卫星的发射速度必定大于第二宇宙速度11.2 km/s
C.在轨道Ⅰ上,卫星在P点的速度大于第一宇宙速度7.9 km/s
D.在轨道Ⅰ上,卫星在Q点的速度大于第一宇宙速度7.9 km/s
答案 C
解析 第一宇宙速度是卫星在近地轨道运行的线速度,根据G=m可知v=,故轨道半径越大,线速度越小,所以同步卫星的运行速度小于第一宇宙速度,A错误;该卫星为地球的卫星,所以发射速度小于第二宇宙速度,B错误;P点为近地轨道上的一点,但要从近地轨道变轨到Ⅰ轨道,则需要在P点加速,所以卫星在P点的速度大于第一宇宙速度,C正确;在Q点要从轨道Ⅰ变轨到轨道Ⅱ,则需要在Q点加速,即卫星在轨道Ⅱ上经过Q点的速度大于在轨道Ⅰ上经过Q点的速度,而轨道Ⅱ上的速度小于第一宇宙速度,故卫星在轨道Ⅰ上经过Q点时的速度小于第一宇宙速度,D错误.
命题点一 近地卫星、同步卫星和赤道上物体的运行问题
1.解决同步卫星问题的“四点”注意
(1)基本关系:要抓住G=ma=m=mrω2=mr.
(2)重要手段:构建物理模型,绘制草图辅助分析.
(3)物理规律:
①不快不慢:具有特定的运行线速度、角速度和周期.
②不高不低:具有特定的位置高度和轨道半径.
③不偏不倚:同步卫星的运行轨道平面必须处于地球赤道平面上,只能静止在赤道上方的特定的点上.
(4)重要条件:
①地球的公转周期为1年,其自转周期为1天(24小时),地球半径约为6.4×103 km,地球表面重力加速度g约为9.8 m/s2.
②月球的公转周期约27.3天,在一般估算中常取27天.
③人造地球卫星的运行半径最小为r=6.4×103 km,运行周期最小为T=84.8 min,运行速度最大为v=7.9 km/s.
2.两个向心加速度
卫星绕地球运行的向心加速度
物体随地球自转的向心加速度
产生原因
由万有引力产生
由万有引力的一个分力(另一分力为重力)产生
方向
指向地心
垂直且指向地轴
大小
a=(地面附近a近似等于g)
a=rω2,r为地面上某点到地轴的距离,ω为地球自转的角速度
特点
随卫星到地心的距离的增大而减小
从赤道到两极逐渐减小
3.两种周期
(1)自转周期是天体绕自身某轴线转动一周所需的时间,取决于天体自身转动的快慢.
(2)公转周期是运行天体绕中心天体做圆周运动一周所需的时间,T=2π,取决于中心天体的质量和运行天体到中心天体的距离.
例1 (2019·江西省鹰潭市模拟)有a、b、c、d四颗卫星,a还未发射,在地球赤道上随地球一起转动,b在地面附近近地轨道上正常运行,c是地球同步卫星,d是高空探测卫星,设地球自转周期为24 h,所有卫星的运动均视为匀速圆周运动,各卫星排列位置如图2所示,则下列关于卫星的说法中正确的是( )
图2
A.a的向心加速度等于重力加速度g
B.c在4 h内转过的圆心角为
C.b在相同的时间内转过的弧长最长
D.d的运动周期可能是23 h
答案 C
解析 同步卫星的运行周期与地球自转周期相同,角速度相同,则a和c的角速度相同,根据a=ω2r知,c的向心加速度大,由=ma知,c的向心加速度小于b的向心加速度,而b的向心加速度约为g,故a的向心加速度小于重力加速度g,选项A错误;由于c为同步卫星,所以c的周期为24 h,因此4 h内转过的圆心角为θ=,选项B错误;由四颗卫星的运行情况可知,b运行的线速度是最大的,所以其在相同的时间内转过的弧长最长,选项C正确;d的运行周期比c要长,所以其周期应大于24 h,选项D错误.
变式1 如图3所示,1970年4月24日我国首次成功发射的人造卫星“东方红一号”,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km,远地点高度约为2 060 km;1984年4月8日成功发射的“东方红二号”卫星运行在赤道上空35 786 km的地球同步轨道上.设“东方红一号”在远地点的加速度为a1,“东方红二号”的加速度为a2,固定在地球赤道上的物体随地球自转的加速度为a3,则a1、a2、a3的大小关系为( )
图3
A.a2>a1>a3 B.a3>a2>a1
C.a3>a1>a2 D.a1>a2>a3
答案 D
解析 由于“东方红二号”卫星是同步卫星,则其角速度和赤道上的物体角速度相等,根据a=ω2r,r2>r3,则a2>a3;由万有引力定律和牛顿第二定律得,G=ma,由题目中数据可以得出,r1a2>a3,选项D正确.
变式2 (2019·福建省南平市第一次质检)如图4所示是北斗导航系统中部分卫星的轨道示意图,已知a、b、c三颗卫星均做圆周运动,a是地球同步卫星,a和b的轨道半径相同,且均为c的k倍,已知地球自转周期为T.则( )
图4
A.卫星b也是地球同步卫星
B.卫星a的向心加速度是卫星c的向心加速度的k2倍
C.卫星c的周期为T
D.a、b、c三颗卫星的运行速度大小关系为va=vb=vc
答案 C
解析 卫星b相对地球不能保持静止,故不是地球同步卫星,A错误;根据公式G=ma可得a=,即==,B错误;根据开普勒第三定律=可得T==Ta=T,C正确;根据公式G=m可得v= ,故va=vb
命题点二 卫星变轨问题
1.变轨原理及过程
(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.如图5所示.
图5
(2)在A点(近地点)点火加速,由于速度变大,万有引力不足以提供卫星在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ.
(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ.
2.变轨过程各物理量分析
(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B点时速率分别为vA、vB.在A点加速,则vA>v1,在B点加速,则v3>vB,又因v1>v3,故有vA>v1>v3>vB.
(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同.
(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律=k可知T1
(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,则E1
例2 (多选)(2018·陕西省宝鸡市质检二)如图6所示,质量为m的人造地球卫星与地心的距离为r时,引力势能可表示为Ep=-,其中G为引力常量,M为地球质量,该卫星原来在半径为R1的轨道Ⅰ上绕地球做匀速圆周运动,经过椭圆轨道Ⅱ的变轨过程进入半径为R3的圆形轨道Ⅲ继续绕地球运动,其中P点为Ⅰ轨道与Ⅱ轨道的切点,Q点为Ⅱ轨道与Ⅲ轨道的切点,下列判断正确的是( )
图6
A.卫星在轨道Ⅰ上的动能为G
B.卫星在轨道Ⅲ上的机械能等于-G
C.卫星在Ⅱ轨道经过Q点时的加速度小于在Ⅲ轨道上经过Q点时的加速度
D.卫星在Ⅰ轨道上经过P点时的速率大于在Ⅱ轨道上经过P点时的速率
答案 AB
解析 在轨道Ⅰ上,有:G=m,解得:v1=,则动能为Ek1=mv=,故A正确;在轨道Ⅲ上,有:G=m,解得:v3=,则动能为Ek3=mv=,引力势能为Ep=-,则机械能为E=Ek3+Ep=-,故B正确;由G=ma得:a=,两个轨道上Q点到地心的距离不变,故向心加速度的大小不变,故C错误;卫星要从Ⅰ轨道变到Ⅱ轨道上,经过P点时必须点火加速,即卫星在Ⅰ轨道上经过P点时的速率小于在Ⅱ轨道上经过P点时的速率,故D错误.
变式3 (多选)(2018·河北省唐山市上学期期末)登陆火星需经历如图7所示的变轨过程,已知引力常量为G,则下列说法正确的是( )
图7
A.飞船在轨道上运动时,运行的周期TⅢ> TⅡ> TⅠ
B.飞船在轨道Ⅰ上的机械能大于在轨道Ⅱ上的机械能
C.飞船在P点从轨道Ⅱ变轨到轨道Ⅰ,需要在P点朝速度方向喷气
D.若轨道Ⅰ贴近火星表面,已知飞船在轨道Ⅰ上运动的角速度,可以推知火星的密度
答案 ACD
解析 根据开普勒第三定律=k可知,飞船在轨道上运动时,运行的周期TⅢ> TⅡ> TⅠ,选项A正确;飞船在P点从轨道Ⅱ变轨到轨道Ⅰ,需要在P点朝速度方向喷气,从而使飞船减速到达轨道Ⅰ,则在轨道Ⅰ上机械能小于在轨道Ⅱ的机械能,选项B错误,C正确;
根据G=mω2R以及M=πR3ρ,解得ρ=,即若轨道Ⅰ贴近火星表面,已知飞船在轨道Ⅰ上运动的角速度,可以推知火星的密度,选项D正确.
变式4 (多选)(2018·河南省南阳、信阳等六市二模)若“嫦娥四号”从距月面高度为100 km的环月圆形轨道Ⅰ上的P点实施变轨,进入近月点为15 km的椭圆轨道Ⅱ,由近月点Q落月,如图8所示.关于“嫦娥四号”,下列说法正确的是( )
图8
A.沿轨道Ⅰ运动至P时,需制动减速才能进入轨道Ⅱ
B. 沿轨道Ⅱ运行的周期大于沿轨道Ⅰ运行的周期
C.沿轨道Ⅱ运行时,在P点的加速度大于在Q点的加速度
D.在轨道Ⅱ上由P点运行到Q点的过程中,万有引力对其做正功,它的动能增加,重力势能减小,机械能不变
答案 AD
解析 要使“嫦娥四号”从环月圆形轨道Ⅰ上的P点实施变轨进入椭圆轨道Ⅱ,需制动减速做近心运动,A正确;由开普勒第三定律知,沿轨道Ⅱ运行的周期小于沿轨道Ⅰ运行的周期,B错误;万有引力使物体产生加速度,a==G,沿轨道Ⅱ运行时,在P点的加速度小于在Q点的加速度,C错误;月球对“嫦娥四号”的万有引力指向月球,所以在轨道Ⅱ上由P点运行到Q点的过程中,万有引力对其做正功,它的动能增加,重力势能减小,机械能不变,D正确.
命题点三 双星或多星模型
1.双星模型
图9
(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图9所示.
(2)特点:
①各自所需的向心力由彼此间的万有引力提供,即=m1ω12r1,=m2ω22r2
②两颗星的周期及角速度都相同,即
T1=T2,ω1=ω2
③两颗星的半径与它们之间的距离关系为:r1+r2=L
④两颗星到圆心的距离r1、r2与星体质量成反比,即=.
⑤双星的运动周期T=2π
⑥双星的总质量m1+m2=
2.多星模型
(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.
(2)三星模型:
①三颗星体位于同一直线上,两颗质量相等的环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图10甲所示).
②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).
图10
(3)四星模型:
①其中一种是四颗质量相等的星体位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙所示).
②另一种是三颗质量相等的星体始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).
例3 (2013·山东卷·20)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为( )
A.T B.T C.T D.T
答案 B
解析 双星靠彼此的引力提供向心力,则有
G=m1r1
G=m2r2
并且r1+r2=L
解得T=2π
当双星总质量变为原来的k倍,两星之间距离变为原来的n倍时
T′=2π=·T
故选项B正确.
变式5 (多选)(2018·全国卷Ⅰ·20)2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前约100 s时,它们相距约400 km,绕二者连线上的某点每秒转动12圈.将两颗中子星都看做是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( )
A.质量之积 B.质量之和
C.速率之和 D.各自的自转角速度
答案 BC
解析 两颗中子星运动到某位置的示意图如图所示
每秒转动12圈,角速度已知
中子星运动时,由万有引力提供向心力得
=m1ω2r1①
=m2ω2r2②
l=r1+r2③
由①②③式得=ω2l,
所以m1+m2=,
质量之和可以估算.
由线速度与角速度的关系v=ωr得
v1=ωr1④
v2=ωr2⑤
由③④⑤式得v1+v2=ω(r1+r2)=ωl,速率之和可以估算.
质量之积和各自自转的角速度无法求解.
变式6 (多选)(2018·广东省高考第一次模拟)如图11,天文观测中观测到有三颗星位于边长为l的等边三角形三个顶点上,并沿等边三角形的外接圆做周期为T的匀速圆周运动.已知引力常量为G,不计其他星体对它们的影响,关于这个三星系统,下列说法正确的是( )
图11
A.三颗星的质量可能不相等
B.某颗星的质量为
C.它们的线速度大小均为
D.它们两两之间的万有引力大小为
答案 BD
解析 轨道半径等于等边三角形外接圆的半径,r==l.根据题意可知其中任意两颗星对第三颗星的合力指向圆心,所以这两颗星对第三颗星的万有引力等大,由于这两颗星到第三颗星的距离相同,故这两颗星的质量相同,所以三颗星的质量一定相同,设为m,则2Gcos 30°=m··l,解得m=,它们两两之间的万有引力F=G=G=,A错误,B、D正确;线速度大小为v==·=,C错误.
1.(2018·广东省茂名市第二次模拟)所谓“超级月亮”,就是月球沿椭圆轨道绕地球运动到近地点的时刻,此时的月球看起来比在远地点时的月球大12%~14%,亮度提高了30%.则下列说法中正确的是( )
A.月球运动到近地点时的速度最小
B.月球运动到近地点时的加速度最大
C.月球由远地点向近地点运动的过程,月球的机械能增大
D.月球由远地点向近地点运动的过程,地球对月球的万有引力做负功
答案 B
解析 由开普勒第二定律,月球运动到近地点时的速度最大,A错误;由牛顿第二定律和万有引力定律可得a=,月球运动到近地点时所受引力最大,加速度最大,B正确;月球绕地球运动过程仅受地球的万有引力,机械能守恒,C错误;月球由远地点向近地点运动的过程中二者间距变小,地球对月球的万有引力做正功,D错误.
2.(多选)(2019·广东省江门市第一次调研)我国发射的某卫星,其轨道平面与地球赤道在同一平面内,卫星距地面的高度约为500 km,而地球同步卫星的轨道高度约为36 000 km,地球半径约为6 400 km,地球表面的重力加速度取g=10 m/s2,关于该卫星,下列说法中正确的是( )
A.该卫星的线速度大小约为7.7 km/s
B.该卫星的加速度大于同步卫星的加速度
C.一年内,该卫星被太阳光照射时间小于同步卫星被太阳光照射时间
D.该卫星的发射速度小于第一宇宙速度
答案 ABC
解析 该卫星的线速度为:v=,又由g=得:
v== m/s≈7.7 km/s,故A正确.根据a=知该卫星的加速度大于同步卫星的加速度,故B正确.由开普勒第三定律知,该卫星的周期小于同步卫星的周期,则一年内,该卫星被太阳光照射时间小于同步卫星被太阳光照射时间,故C正确.第一宇宙速度是卫星最小的发射速度,知该卫星的发射速度大于第一宇宙速度,故D错误.
3.(2018·山东省日照市校际联合质检)“慧眼”是我国首颗大型X射线天文卫星,这意味着我国在X射线空间观测方面具有国际先进的暗弱变源巡天能力、独特的多波段快速光观测能力等.下列关于“慧眼”卫星的说法正确的是( )
A.如果不加干预,“慧眼”卫星的动能可能会缓慢减小
B.如果不加干预,“慧眼”卫星的轨道高度可能会缓慢降低
C. “慧眼”卫星在轨道上处于失重状态,所以不受地球的引力作用
D.由于技术的进步,“慧眼”卫星在轨道上运行的线速度可能会大于第一宇宙速度
答案 B
解析 卫星轨道所处的空间存在极其稀薄的空气,如果不加干预,卫星的机械能减小,卫星的轨道高度会缓慢降低,据G=m可得v=,卫星的轨道高度降低,卫星的线速度增大,卫星的动能增大,故A错误,B正确.卫星在轨道上,受到的地球引力产生向心加速度,处于失重状态,故C错误.据G=m可得v=,卫星在轨道上运行的线速度小于第一宇宙速度,故D错误.
4.(多选)(2018·山东省淄博市一中三模)2017年4月20日19时41分,“天舟一号”货运飞船在文昌航天发射场成功发射并与“天宫二号”空间实验室成功对接.假设对接前“天舟一号”与“天宫二号”都围绕地球做匀速圆周运动,下列说法正确的是( )
A.“天舟一号”货运飞船发射加速上升时,里面的货物处于超重状态
B.“天舟一号”货运飞船在整个发射过程中,里面的货物始终处于完全失重状态
C.为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向后喷气加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接
D.为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向前喷气减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接
答案 AC
解析 “天舟一号”货运飞船发射加速上升时,加速度向上,则里面的货物处于超重状态,选项A正确,B错误;为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向后喷气加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接,选项C正确,D错误.
5.如图1所示,有A、B两颗卫星绕地心O做圆周运动,旋转方向相同.A卫星的周期为T1,B卫星的周期为T2,在某一时刻两卫星相距最近,则(引力常量为G)( )
图1
A.两卫星经过时间t=T1+T2再次相距最近
B.两颗卫星的轨道半径之比为
C.若已知两颗卫星相距最近时的距离,可求出地球的密度
D.若已知两颗卫星相距最近时的距离,可求出地球表面的重力加速度
答案 B
解析 两卫星相距最近时,两卫星应该在同一半径方向上,A比B多转动一圈时,第二次追上,转动的角度相差2π,即t-t=2π,得出t=,故A错误;根据万有引力提供向心力得=mr,A卫星的周期为T1,B卫星的周期为T2,所以两颗卫星的轨道半径之比为,故B正确;若已知两颗卫星相距最近时的距离,结合两颗卫星的轨道半径之比可以求得两颗卫星的轨道半径,根据万有引力提供向心力得=mr,可求出地球的质量,但不知道地球的半径,所以不可求出地球密度和地球表面的重力加速度,故C、D错误.
6.(多选)(2018·山西省太原市三模)据NASA报道,“卡西尼”号于2017年4月26日首次到达土星和土星内环(碎冰块、岩石块、尘埃等组成)之间,并在近圆轨道做圆周运动,如图2所示.在极其稀薄的大气作用下,开启土星探测之旅的最后阶段——“大结局”阶段.这一阶段持续到九月中旬,直至坠向土星的怀抱.若“卡西尼”只受土星引力和稀薄气体阻力的作用,则( )
图2
A.4月26日,“卡西尼”在近圆轨道上绕土星的角速度小于内环的角速度
B.4月28日,“卡西尼”在近圆轨道上绕土星的速率大于内环的速率
C.5月到6月间,“卡西尼”的动能越来越大
D.6月到8月间,“卡西尼”的动能、以及它与土星的引力势能之和保持不变
答案 BC
解析 根据万有引力提供向心力:=mω2r,ω=,“卡西尼”在近圆轨道上绕土星的角速度大于内环的角速度,A错误;根据万有引力提供向心力:=m,v= ,“卡西尼”在近圆轨道上绕土星的速率大于内环的速率,B正确;根据万有引力提供向心力:=m,v=,“卡西尼”的轨道半径越来越小,动能越来越大,C正确;“卡西尼”的轨道半径越来越小,动能越来越大,由于稀薄气体阻力的作用,动能与土星的引力势能之和减小,D错误.
7.(多选)(2018·安徽省滁州市上学期期末)如图3为某双星系统A、B绕其连线上的O点做匀速圆周运动的示意图,若A星的轨道半径大于B星的轨道半径,双星的总质量M,双星间的距离为L,其运动周期为T,则( )
图3
A.A的质量一定大于B的质量
B.A的线速度一定大于B的线速度
C.L一定,M越大,T越大
D.M一定,L越大,T越大
答案 BD
解析 设双星质量分别为mA、mB,轨道半径分别为RA、RB,角速度相等,均为ω,根据万有引力定律可知:G=mAω2RA, G=mBω2RB,距离关系为:RA+RB=L,联立解得:=,因为RA>RB,所以A的质量一定小于B的质量,故A错误;根据线速度与角速度的关系有:vA=ωRA、vB=ωRB,因为角速度相等,半径RA>RB,所以A的线速度大于B的线速度,故B正确;又因为T=,联立可得周期为:T=2π ,所以总质量M一定,两星间距离L越大,周期T越大,故C错误,D正确.
8.(2015·山东卷·15)如图4所示,拉格朗日点L1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动.据此,科学家设想在拉格朗日点L1建立空间站,使其与月球同周期绕地球运动.以a1、a2分别表示该空间站和月球向心加速度的大小,a3表示地球同步卫星向心加速度的大小.以下判断正确的是( )
图4
A.a2>a3>a1 B.a2>a1>a3
C.a3>a1>a2 D.a3>a2>a1
答案 D
解析 因空间站建在拉格朗日点,故其周期等于月球的周期,根据a=r可知,a2>a1,对空间站和地球的同步卫星而言,由于同步卫星的轨道半径较空间站的小,根据a=可知,a3>a2,故选项D正确.
9.(2018·四川省德阳市高考一诊)2016年10月17日发射的“神舟十一号”飞船于2016年10月19日与“天宫二号”顺利实现了对接,如图5,在对接过程中,“神舟十一号”与“天宫二号”的相对速度非常小,可以认为具有相同速率.它们的运动可以看做是绕地球的匀速圆周运动,设“神舟十一号”的质量为m,对接处距离地球表面高度为h,地球的半径为r,地球表面处的重力加速度为g,不考虑地球自转的影响,“神舟十一号”在对接时,下列说法正确的是( )
图5
A.对地球的引力大小为mg
B.向心加速度为g
C.周期为
D.动能为
答案 C
解析 “神舟十一号”在对接处的重力加速度小于地球表面的重力加速度,对地球的引力小于mg,故A错误;在地球表面重力等于万有引力,有G=mg
解得:GM=gr2①
对接时,万有引力提供向心力,有G=ma②
联立①②式得:a=g,故B错误;根据万有引力提供向心力,有G=m(r+h)③
联立①③得T=,故C正确;根据万有引力提供向心力,G=m④
动能Ek=mv2==,故D错误.
10.(2014·山东卷·20)2013年我国相继完成“神十”与“天宫”对接、“嫦娥”携“玉兔”落月两大航天工程.某航天爱好者提出“玉兔”回家的设想:如图6所示,将携带“玉兔”的返回系统由月球表面发射到h高度的轨道上,与在该轨道绕月球做圆周运动的飞船对接,然后由飞船送“玉兔”返回地球.设“玉兔”质量为m,月球半径为R,月面的重力加速度为g月.以月面为零势能面,“玉兔”在h高度的引力势能可表示为Ep=,其中G为引力常量,M为月球质量.若忽略月球的自转,从开始发射到对接完成需要对“玉兔”做的功为( )
图6
A.(h+2R) B.(h+R)
C.(h+R) D.(h+R)
答案 D
解析 “玉兔”在h高处做圆周运动时有G=.发射“玉兔”时对“玉兔”做的功W=mv2+Ep.在月球表面有=mg月,联立各式解得W=(h+R).故选项D正确,选项A、B、C错误.
11.(2018·江西省七校第一次联考)两个天体(包括人造天体)间存在万有引力,并具有由相对位置决定的势能.如果两个天体的质量分别为m1和m2,当它们相距无穷远时势能为零,则它们距离为r时,引力势能为Ep=-G.发射地球同步卫星一般是把它先送入较低的圆形轨道,如图7中Ⅰ轨道,再经过两次“点火”,即先在图中a点处启动燃气发动机,向后喷出高压燃气,卫星得到加速,进入图中的椭圆轨道Ⅱ,在轨道Ⅱ的远地点b处第二次“点火”,卫星再次被加速,此后,沿图中的圆形轨道Ⅲ(即同步轨道)运动.设某同步卫星的质量为m,地球半径为R,轨道Ⅰ距地面非常近,轨道Ⅲ距地面的距离近似为6R,地面处的重力加速度为g,并且每次点火经历的时间都很短,点火过程中卫星的质量减少可以忽略.求:
图7
(1)从轨道Ⅰ转移到轨道Ⅲ的过程中,合力对卫星所做的总功是多少?
(2)两次“点火”过程中燃气对卫星所做的总功是多少?
答案 (1)- (2)
解析 (1)卫星在轨道Ⅰ和轨道Ⅲ做圆周运动,应满足:
G=m,故Ek1=mv12==mgR
G=m,故Ek2=mv22=
合力对卫星所做的总功
W=Ek2-Ek1=mgR(-)=-
(2)卫星在轨道Ⅰ上的势能Ep1=-=-mgR
卫星在轨道Ⅲ上的势能Ep2=-=-
则燃气对卫星所做的总功
W′=(Ep2+ Ek2)-(Ep1+ Ek1)
=(-+)-(-mgR+mgR)
=.
专题解读 1.本专题是万有引力定律在天体运行中的特殊运用,同步卫星是与地球表面相对静止的卫星;而双星或多星模型有可能没有中心天体,近年来常以选择题形式在高考题中出现.
2.学好本专题有助于学生更加灵活地应用万有引力定律,加深对力和运动关系的理解.
3.需要用到的知识:牛顿第二定律、万有引力定律、圆周运动规律等.
一、卫星的轨道
1.赤道轨道:卫星的轨道在赤道平面内,同步卫星就是其中的一种.
2.极地轨道:卫星的轨道过南、北两极,即在垂直于赤道的平面内,如极地气象卫星.
3.其他轨道:除以上两种轨道外的卫星轨道.
所有卫星的轨道平面一定通过地球的球心.
自测1 (多选)可以发射一颗这样的人造地球卫星,使其圆轨道( )
A.与地球表面上某一纬线(非赤道)是共面同心圆
B.与地球表面上某一经线所决定的圆是共面同心圆
C.与地球表面上的赤道线是共面同心圆,且卫星相对地球表面是静止的
D.与地球表面上的赤道线是共面同心圆,但卫星相对地球表面是运动的
答案 CD
解析 人造地球卫星运行时,由于地球对卫星的引力提供它做圆周运动的向心力,而这个力的方向必定指向圆心,即指向地心,也就是说人造地球卫星所在轨道圆的圆心一定要和地球的中心重合,不可能是地轴上(除地心外)的某一点,故A错误;由于地球同时绕着地轴在自转,所以卫星的轨道平面也不可能和经线所决定的平面共面,所以B错误;相对地球表面静止的卫星就是地球的同步卫星,它必须在赤道平面内,且距地面有确定的高度,这个高度约为三万六千千米,而低于或高于这个轨道的卫星也可以在赤道平面内运动,不过由于它们公转的周期和地球自转周期不同,就会相对于地面运动,C、D正确.
二、地球同步卫星的特点
相对于地面静止且与地球自转具有相同周期的卫星叫地球同步卫星.同步卫星有以下“七个一定”的特点:
(1)轨道平面一定:轨道平面与赤道平面共面.
(2)周期一定:与地球自转周期相同,即T=24 h.
(3)角速度一定:与地球自转的角速度相同.
(4)高度一定:由G=m(R+h)得地球同步卫星离地面的高度h=-R≈3.6×107 m.
(5)速率一定:v=≈3.1×103 m/s.
(6)向心加速度一定:由G=man得an==gh=0.23 m/s2,即同步卫星的向心加速度等于轨道处的重力加速度.
(7)绕行方向一定:运行方向与地球自转方向一致.
自测2 (2018·河南省鹤壁市第二次段考)已知某行星半径为R,以第一宇宙速度围绕该行星运行的卫星的绕行周期为T,围绕该行星运动的同步卫星运行速率为v,则该行星的自转周期为( )
A. B. C. D.
答案 A
解析 设同步卫星距地面的高度为h,则=m,以第一宇宙速度运行的卫星的轨道半径为R,=m2R,联立解得h=-R,行星的自转周期等于同步卫星运转周期T==,A选项正确,B、C、D选项错误.
三、卫星变轨
1.当卫星的速度突然增大时,G
自测3 (2018·安徽省江南十校冲刺联考)现对于发射地球同步卫星的过程分析,如图1所示,卫星首先进入椭圆轨道Ⅰ,P点是轨道Ⅰ上的近地点,然后在Q点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则( )
图1
A.卫星在同步轨道Ⅱ上的运行速度大于第一宇宙速度7.9 km/s
B.该卫星的发射速度必定大于第二宇宙速度11.2 km/s
C.在轨道Ⅰ上,卫星在P点的速度大于第一宇宙速度7.9 km/s
D.在轨道Ⅰ上,卫星在Q点的速度大于第一宇宙速度7.9 km/s
答案 C
解析 第一宇宙速度是卫星在近地轨道运行的线速度,根据G=m可知v=,故轨道半径越大,线速度越小,所以同步卫星的运行速度小于第一宇宙速度,A错误;该卫星为地球的卫星,所以发射速度小于第二宇宙速度,B错误;P点为近地轨道上的一点,但要从近地轨道变轨到Ⅰ轨道,则需要在P点加速,所以卫星在P点的速度大于第一宇宙速度,C正确;在Q点要从轨道Ⅰ变轨到轨道Ⅱ,则需要在Q点加速,即卫星在轨道Ⅱ上经过Q点的速度大于在轨道Ⅰ上经过Q点的速度,而轨道Ⅱ上的速度小于第一宇宙速度,故卫星在轨道Ⅰ上经过Q点时的速度小于第一宇宙速度,D错误.
命题点一 近地卫星、同步卫星和赤道上物体的运行问题
1.解决同步卫星问题的“四点”注意
(1)基本关系:要抓住G=ma=m=mrω2=mr.
(2)重要手段:构建物理模型,绘制草图辅助分析.
(3)物理规律:
①不快不慢:具有特定的运行线速度、角速度和周期.
②不高不低:具有特定的位置高度和轨道半径.
③不偏不倚:同步卫星的运行轨道平面必须处于地球赤道平面上,只能静止在赤道上方的特定的点上.
(4)重要条件:
①地球的公转周期为1年,其自转周期为1天(24小时),地球半径约为6.4×103 km,地球表面重力加速度g约为9.8 m/s2.
②月球的公转周期约27.3天,在一般估算中常取27天.
③人造地球卫星的运行半径最小为r=6.4×103 km,运行周期最小为T=84.8 min,运行速度最大为v=7.9 km/s.
2.两个向心加速度
卫星绕地球运行的向心加速度
物体随地球自转的向心加速度
产生原因
由万有引力产生
由万有引力的一个分力(另一分力为重力)产生
方向
指向地心
垂直且指向地轴
大小
a=(地面附近a近似等于g)
a=rω2,r为地面上某点到地轴的距离,ω为地球自转的角速度
特点
随卫星到地心的距离的增大而减小
从赤道到两极逐渐减小
3.两种周期
(1)自转周期是天体绕自身某轴线转动一周所需的时间,取决于天体自身转动的快慢.
(2)公转周期是运行天体绕中心天体做圆周运动一周所需的时间,T=2π,取决于中心天体的质量和运行天体到中心天体的距离.
例1 (2019·江西省鹰潭市模拟)有a、b、c、d四颗卫星,a还未发射,在地球赤道上随地球一起转动,b在地面附近近地轨道上正常运行,c是地球同步卫星,d是高空探测卫星,设地球自转周期为24 h,所有卫星的运动均视为匀速圆周运动,各卫星排列位置如图2所示,则下列关于卫星的说法中正确的是( )
图2
A.a的向心加速度等于重力加速度g
B.c在4 h内转过的圆心角为
C.b在相同的时间内转过的弧长最长
D.d的运动周期可能是23 h
答案 C
解析 同步卫星的运行周期与地球自转周期相同,角速度相同,则a和c的角速度相同,根据a=ω2r知,c的向心加速度大,由=ma知,c的向心加速度小于b的向心加速度,而b的向心加速度约为g,故a的向心加速度小于重力加速度g,选项A错误;由于c为同步卫星,所以c的周期为24 h,因此4 h内转过的圆心角为θ=,选项B错误;由四颗卫星的运行情况可知,b运行的线速度是最大的,所以其在相同的时间内转过的弧长最长,选项C正确;d的运行周期比c要长,所以其周期应大于24 h,选项D错误.
变式1 如图3所示,1970年4月24日我国首次成功发射的人造卫星“东方红一号”,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km,远地点高度约为2 060 km;1984年4月8日成功发射的“东方红二号”卫星运行在赤道上空35 786 km的地球同步轨道上.设“东方红一号”在远地点的加速度为a1,“东方红二号”的加速度为a2,固定在地球赤道上的物体随地球自转的加速度为a3,则a1、a2、a3的大小关系为( )
图3
A.a2>a1>a3 B.a3>a2>a1
C.a3>a1>a2 D.a1>a2>a3
答案 D
解析 由于“东方红二号”卫星是同步卫星,则其角速度和赤道上的物体角速度相等,根据a=ω2r,r2>r3,则a2>a3;由万有引力定律和牛顿第二定律得,G=ma,由题目中数据可以得出,r1
变式2 (2019·福建省南平市第一次质检)如图4所示是北斗导航系统中部分卫星的轨道示意图,已知a、b、c三颗卫星均做圆周运动,a是地球同步卫星,a和b的轨道半径相同,且均为c的k倍,已知地球自转周期为T.则( )
图4
A.卫星b也是地球同步卫星
B.卫星a的向心加速度是卫星c的向心加速度的k2倍
C.卫星c的周期为T
D.a、b、c三颗卫星的运行速度大小关系为va=vb=vc
答案 C
解析 卫星b相对地球不能保持静止,故不是地球同步卫星,A错误;根据公式G=ma可得a=,即==,B错误;根据开普勒第三定律=可得T==Ta=T,C正确;根据公式G=m可得v= ,故va=vb
1.变轨原理及过程
(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.如图5所示.
图5
(2)在A点(近地点)点火加速,由于速度变大,万有引力不足以提供卫星在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ.
(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ.
2.变轨过程各物理量分析
(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B点时速率分别为vA、vB.在A点加速,则vA>v1,在B点加速,则v3>vB,又因v1>v3,故有vA>v1>v3>vB.
(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同.
(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律=k可知T1
图6
A.卫星在轨道Ⅰ上的动能为G
B.卫星在轨道Ⅲ上的机械能等于-G
C.卫星在Ⅱ轨道经过Q点时的加速度小于在Ⅲ轨道上经过Q点时的加速度
D.卫星在Ⅰ轨道上经过P点时的速率大于在Ⅱ轨道上经过P点时的速率
答案 AB
解析 在轨道Ⅰ上,有:G=m,解得:v1=,则动能为Ek1=mv=,故A正确;在轨道Ⅲ上,有:G=m,解得:v3=,则动能为Ek3=mv=,引力势能为Ep=-,则机械能为E=Ek3+Ep=-,故B正确;由G=ma得:a=,两个轨道上Q点到地心的距离不变,故向心加速度的大小不变,故C错误;卫星要从Ⅰ轨道变到Ⅱ轨道上,经过P点时必须点火加速,即卫星在Ⅰ轨道上经过P点时的速率小于在Ⅱ轨道上经过P点时的速率,故D错误.
变式3 (多选)(2018·河北省唐山市上学期期末)登陆火星需经历如图7所示的变轨过程,已知引力常量为G,则下列说法正确的是( )
图7
A.飞船在轨道上运动时,运行的周期TⅢ> TⅡ> TⅠ
B.飞船在轨道Ⅰ上的机械能大于在轨道Ⅱ上的机械能
C.飞船在P点从轨道Ⅱ变轨到轨道Ⅰ,需要在P点朝速度方向喷气
D.若轨道Ⅰ贴近火星表面,已知飞船在轨道Ⅰ上运动的角速度,可以推知火星的密度
答案 ACD
解析 根据开普勒第三定律=k可知,飞船在轨道上运动时,运行的周期TⅢ> TⅡ> TⅠ,选项A正确;飞船在P点从轨道Ⅱ变轨到轨道Ⅰ,需要在P点朝速度方向喷气,从而使飞船减速到达轨道Ⅰ,则在轨道Ⅰ上机械能小于在轨道Ⅱ的机械能,选项B错误,C正确;
根据G=mω2R以及M=πR3ρ,解得ρ=,即若轨道Ⅰ贴近火星表面,已知飞船在轨道Ⅰ上运动的角速度,可以推知火星的密度,选项D正确.
变式4 (多选)(2018·河南省南阳、信阳等六市二模)若“嫦娥四号”从距月面高度为100 km的环月圆形轨道Ⅰ上的P点实施变轨,进入近月点为15 km的椭圆轨道Ⅱ,由近月点Q落月,如图8所示.关于“嫦娥四号”,下列说法正确的是( )
图8
A.沿轨道Ⅰ运动至P时,需制动减速才能进入轨道Ⅱ
B. 沿轨道Ⅱ运行的周期大于沿轨道Ⅰ运行的周期
C.沿轨道Ⅱ运行时,在P点的加速度大于在Q点的加速度
D.在轨道Ⅱ上由P点运行到Q点的过程中,万有引力对其做正功,它的动能增加,重力势能减小,机械能不变
答案 AD
解析 要使“嫦娥四号”从环月圆形轨道Ⅰ上的P点实施变轨进入椭圆轨道Ⅱ,需制动减速做近心运动,A正确;由开普勒第三定律知,沿轨道Ⅱ运行的周期小于沿轨道Ⅰ运行的周期,B错误;万有引力使物体产生加速度,a==G,沿轨道Ⅱ运行时,在P点的加速度小于在Q点的加速度,C错误;月球对“嫦娥四号”的万有引力指向月球,所以在轨道Ⅱ上由P点运行到Q点的过程中,万有引力对其做正功,它的动能增加,重力势能减小,机械能不变,D正确.
命题点三 双星或多星模型
1.双星模型
图9
(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图9所示.
(2)特点:
①各自所需的向心力由彼此间的万有引力提供,即=m1ω12r1,=m2ω22r2
②两颗星的周期及角速度都相同,即
T1=T2,ω1=ω2
③两颗星的半径与它们之间的距离关系为:r1+r2=L
④两颗星到圆心的距离r1、r2与星体质量成反比,即=.
⑤双星的运动周期T=2π
⑥双星的总质量m1+m2=
2.多星模型
(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.
(2)三星模型:
①三颗星体位于同一直线上,两颗质量相等的环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图10甲所示).
②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).
图10
(3)四星模型:
①其中一种是四颗质量相等的星体位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙所示).
②另一种是三颗质量相等的星体始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).
例3 (2013·山东卷·20)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为( )
A.T B.T C.T D.T
答案 B
解析 双星靠彼此的引力提供向心力,则有
G=m1r1
G=m2r2
并且r1+r2=L
解得T=2π
当双星总质量变为原来的k倍,两星之间距离变为原来的n倍时
T′=2π=·T
故选项B正确.
变式5 (多选)(2018·全国卷Ⅰ·20)2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前约100 s时,它们相距约400 km,绕二者连线上的某点每秒转动12圈.将两颗中子星都看做是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( )
A.质量之积 B.质量之和
C.速率之和 D.各自的自转角速度
答案 BC
解析 两颗中子星运动到某位置的示意图如图所示
每秒转动12圈,角速度已知
中子星运动时,由万有引力提供向心力得
=m1ω2r1①
=m2ω2r2②
l=r1+r2③
由①②③式得=ω2l,
所以m1+m2=,
质量之和可以估算.
由线速度与角速度的关系v=ωr得
v1=ωr1④
v2=ωr2⑤
由③④⑤式得v1+v2=ω(r1+r2)=ωl,速率之和可以估算.
质量之积和各自自转的角速度无法求解.
变式6 (多选)(2018·广东省高考第一次模拟)如图11,天文观测中观测到有三颗星位于边长为l的等边三角形三个顶点上,并沿等边三角形的外接圆做周期为T的匀速圆周运动.已知引力常量为G,不计其他星体对它们的影响,关于这个三星系统,下列说法正确的是( )
图11
A.三颗星的质量可能不相等
B.某颗星的质量为
C.它们的线速度大小均为
D.它们两两之间的万有引力大小为
答案 BD
解析 轨道半径等于等边三角形外接圆的半径,r==l.根据题意可知其中任意两颗星对第三颗星的合力指向圆心,所以这两颗星对第三颗星的万有引力等大,由于这两颗星到第三颗星的距离相同,故这两颗星的质量相同,所以三颗星的质量一定相同,设为m,则2Gcos 30°=m··l,解得m=,它们两两之间的万有引力F=G=G=,A错误,B、D正确;线速度大小为v==·=,C错误.
1.(2018·广东省茂名市第二次模拟)所谓“超级月亮”,就是月球沿椭圆轨道绕地球运动到近地点的时刻,此时的月球看起来比在远地点时的月球大12%~14%,亮度提高了30%.则下列说法中正确的是( )
A.月球运动到近地点时的速度最小
B.月球运动到近地点时的加速度最大
C.月球由远地点向近地点运动的过程,月球的机械能增大
D.月球由远地点向近地点运动的过程,地球对月球的万有引力做负功
答案 B
解析 由开普勒第二定律,月球运动到近地点时的速度最大,A错误;由牛顿第二定律和万有引力定律可得a=,月球运动到近地点时所受引力最大,加速度最大,B正确;月球绕地球运动过程仅受地球的万有引力,机械能守恒,C错误;月球由远地点向近地点运动的过程中二者间距变小,地球对月球的万有引力做正功,D错误.
2.(多选)(2019·广东省江门市第一次调研)我国发射的某卫星,其轨道平面与地球赤道在同一平面内,卫星距地面的高度约为500 km,而地球同步卫星的轨道高度约为36 000 km,地球半径约为6 400 km,地球表面的重力加速度取g=10 m/s2,关于该卫星,下列说法中正确的是( )
A.该卫星的线速度大小约为7.7 km/s
B.该卫星的加速度大于同步卫星的加速度
C.一年内,该卫星被太阳光照射时间小于同步卫星被太阳光照射时间
D.该卫星的发射速度小于第一宇宙速度
答案 ABC
解析 该卫星的线速度为:v=,又由g=得:
v== m/s≈7.7 km/s,故A正确.根据a=知该卫星的加速度大于同步卫星的加速度,故B正确.由开普勒第三定律知,该卫星的周期小于同步卫星的周期,则一年内,该卫星被太阳光照射时间小于同步卫星被太阳光照射时间,故C正确.第一宇宙速度是卫星最小的发射速度,知该卫星的发射速度大于第一宇宙速度,故D错误.
3.(2018·山东省日照市校际联合质检)“慧眼”是我国首颗大型X射线天文卫星,这意味着我国在X射线空间观测方面具有国际先进的暗弱变源巡天能力、独特的多波段快速光观测能力等.下列关于“慧眼”卫星的说法正确的是( )
A.如果不加干预,“慧眼”卫星的动能可能会缓慢减小
B.如果不加干预,“慧眼”卫星的轨道高度可能会缓慢降低
C. “慧眼”卫星在轨道上处于失重状态,所以不受地球的引力作用
D.由于技术的进步,“慧眼”卫星在轨道上运行的线速度可能会大于第一宇宙速度
答案 B
解析 卫星轨道所处的空间存在极其稀薄的空气,如果不加干预,卫星的机械能减小,卫星的轨道高度会缓慢降低,据G=m可得v=,卫星的轨道高度降低,卫星的线速度增大,卫星的动能增大,故A错误,B正确.卫星在轨道上,受到的地球引力产生向心加速度,处于失重状态,故C错误.据G=m可得v=,卫星在轨道上运行的线速度小于第一宇宙速度,故D错误.
4.(多选)(2018·山东省淄博市一中三模)2017年4月20日19时41分,“天舟一号”货运飞船在文昌航天发射场成功发射并与“天宫二号”空间实验室成功对接.假设对接前“天舟一号”与“天宫二号”都围绕地球做匀速圆周运动,下列说法正确的是( )
A.“天舟一号”货运飞船发射加速上升时,里面的货物处于超重状态
B.“天舟一号”货运飞船在整个发射过程中,里面的货物始终处于完全失重状态
C.为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向后喷气加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接
D.为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向前喷气减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接
答案 AC
解析 “天舟一号”货运飞船发射加速上升时,加速度向上,则里面的货物处于超重状态,选项A正确,B错误;为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向后喷气加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接,选项C正确,D错误.
5.如图1所示,有A、B两颗卫星绕地心O做圆周运动,旋转方向相同.A卫星的周期为T1,B卫星的周期为T2,在某一时刻两卫星相距最近,则(引力常量为G)( )
图1
A.两卫星经过时间t=T1+T2再次相距最近
B.两颗卫星的轨道半径之比为
C.若已知两颗卫星相距最近时的距离,可求出地球的密度
D.若已知两颗卫星相距最近时的距离,可求出地球表面的重力加速度
答案 B
解析 两卫星相距最近时,两卫星应该在同一半径方向上,A比B多转动一圈时,第二次追上,转动的角度相差2π,即t-t=2π,得出t=,故A错误;根据万有引力提供向心力得=mr,A卫星的周期为T1,B卫星的周期为T2,所以两颗卫星的轨道半径之比为,故B正确;若已知两颗卫星相距最近时的距离,结合两颗卫星的轨道半径之比可以求得两颗卫星的轨道半径,根据万有引力提供向心力得=mr,可求出地球的质量,但不知道地球的半径,所以不可求出地球密度和地球表面的重力加速度,故C、D错误.
6.(多选)(2018·山西省太原市三模)据NASA报道,“卡西尼”号于2017年4月26日首次到达土星和土星内环(碎冰块、岩石块、尘埃等组成)之间,并在近圆轨道做圆周运动,如图2所示.在极其稀薄的大气作用下,开启土星探测之旅的最后阶段——“大结局”阶段.这一阶段持续到九月中旬,直至坠向土星的怀抱.若“卡西尼”只受土星引力和稀薄气体阻力的作用,则( )
图2
A.4月26日,“卡西尼”在近圆轨道上绕土星的角速度小于内环的角速度
B.4月28日,“卡西尼”在近圆轨道上绕土星的速率大于内环的速率
C.5月到6月间,“卡西尼”的动能越来越大
D.6月到8月间,“卡西尼”的动能、以及它与土星的引力势能之和保持不变
答案 BC
解析 根据万有引力提供向心力:=mω2r,ω=,“卡西尼”在近圆轨道上绕土星的角速度大于内环的角速度,A错误;根据万有引力提供向心力:=m,v= ,“卡西尼”在近圆轨道上绕土星的速率大于内环的速率,B正确;根据万有引力提供向心力:=m,v=,“卡西尼”的轨道半径越来越小,动能越来越大,C正确;“卡西尼”的轨道半径越来越小,动能越来越大,由于稀薄气体阻力的作用,动能与土星的引力势能之和减小,D错误.
7.(多选)(2018·安徽省滁州市上学期期末)如图3为某双星系统A、B绕其连线上的O点做匀速圆周运动的示意图,若A星的轨道半径大于B星的轨道半径,双星的总质量M,双星间的距离为L,其运动周期为T,则( )
图3
A.A的质量一定大于B的质量
B.A的线速度一定大于B的线速度
C.L一定,M越大,T越大
D.M一定,L越大,T越大
答案 BD
解析 设双星质量分别为mA、mB,轨道半径分别为RA、RB,角速度相等,均为ω,根据万有引力定律可知:G=mAω2RA, G=mBω2RB,距离关系为:RA+RB=L,联立解得:=,因为RA>RB,所以A的质量一定小于B的质量,故A错误;根据线速度与角速度的关系有:vA=ωRA、vB=ωRB,因为角速度相等,半径RA>RB,所以A的线速度大于B的线速度,故B正确;又因为T=,联立可得周期为:T=2π ,所以总质量M一定,两星间距离L越大,周期T越大,故C错误,D正确.
8.(2015·山东卷·15)如图4所示,拉格朗日点L1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动.据此,科学家设想在拉格朗日点L1建立空间站,使其与月球同周期绕地球运动.以a1、a2分别表示该空间站和月球向心加速度的大小,a3表示地球同步卫星向心加速度的大小.以下判断正确的是( )
图4
A.a2>a3>a1 B.a2>a1>a3
C.a3>a1>a2 D.a3>a2>a1
答案 D
解析 因空间站建在拉格朗日点,故其周期等于月球的周期,根据a=r可知,a2>a1,对空间站和地球的同步卫星而言,由于同步卫星的轨道半径较空间站的小,根据a=可知,a3>a2,故选项D正确.
9.(2018·四川省德阳市高考一诊)2016年10月17日发射的“神舟十一号”飞船于2016年10月19日与“天宫二号”顺利实现了对接,如图5,在对接过程中,“神舟十一号”与“天宫二号”的相对速度非常小,可以认为具有相同速率.它们的运动可以看做是绕地球的匀速圆周运动,设“神舟十一号”的质量为m,对接处距离地球表面高度为h,地球的半径为r,地球表面处的重力加速度为g,不考虑地球自转的影响,“神舟十一号”在对接时,下列说法正确的是( )
图5
A.对地球的引力大小为mg
B.向心加速度为g
C.周期为
D.动能为
答案 C
解析 “神舟十一号”在对接处的重力加速度小于地球表面的重力加速度,对地球的引力小于mg,故A错误;在地球表面重力等于万有引力,有G=mg
解得:GM=gr2①
对接时,万有引力提供向心力,有G=ma②
联立①②式得:a=g,故B错误;根据万有引力提供向心力,有G=m(r+h)③
联立①③得T=,故C正确;根据万有引力提供向心力,G=m④
动能Ek=mv2==,故D错误.
10.(2014·山东卷·20)2013年我国相继完成“神十”与“天宫”对接、“嫦娥”携“玉兔”落月两大航天工程.某航天爱好者提出“玉兔”回家的设想:如图6所示,将携带“玉兔”的返回系统由月球表面发射到h高度的轨道上,与在该轨道绕月球做圆周运动的飞船对接,然后由飞船送“玉兔”返回地球.设“玉兔”质量为m,月球半径为R,月面的重力加速度为g月.以月面为零势能面,“玉兔”在h高度的引力势能可表示为Ep=,其中G为引力常量,M为月球质量.若忽略月球的自转,从开始发射到对接完成需要对“玉兔”做的功为( )
图6
A.(h+2R) B.(h+R)
C.(h+R) D.(h+R)
答案 D
解析 “玉兔”在h高处做圆周运动时有G=.发射“玉兔”时对“玉兔”做的功W=mv2+Ep.在月球表面有=mg月,联立各式解得W=(h+R).故选项D正确,选项A、B、C错误.
11.(2018·江西省七校第一次联考)两个天体(包括人造天体)间存在万有引力,并具有由相对位置决定的势能.如果两个天体的质量分别为m1和m2,当它们相距无穷远时势能为零,则它们距离为r时,引力势能为Ep=-G.发射地球同步卫星一般是把它先送入较低的圆形轨道,如图7中Ⅰ轨道,再经过两次“点火”,即先在图中a点处启动燃气发动机,向后喷出高压燃气,卫星得到加速,进入图中的椭圆轨道Ⅱ,在轨道Ⅱ的远地点b处第二次“点火”,卫星再次被加速,此后,沿图中的圆形轨道Ⅲ(即同步轨道)运动.设某同步卫星的质量为m,地球半径为R,轨道Ⅰ距地面非常近,轨道Ⅲ距地面的距离近似为6R,地面处的重力加速度为g,并且每次点火经历的时间都很短,点火过程中卫星的质量减少可以忽略.求:
图7
(1)从轨道Ⅰ转移到轨道Ⅲ的过程中,合力对卫星所做的总功是多少?
(2)两次“点火”过程中燃气对卫星所做的总功是多少?
答案 (1)- (2)
解析 (1)卫星在轨道Ⅰ和轨道Ⅲ做圆周运动,应满足:
G=m,故Ek1=mv12==mgR
G=m,故Ek2=mv22=
合力对卫星所做的总功
W=Ek2-Ek1=mgR(-)=-
(2)卫星在轨道Ⅰ上的势能Ep1=-=-mgR
卫星在轨道Ⅲ上的势能Ep2=-=-
则燃气对卫星所做的总功
W′=(Ep2+ Ek2)-(Ep1+ Ek1)
=(-+)-(-mgR+mgR)
=.
相关资料
更多