|学案下载
搜索
    上传资料 赚现金
    2021届高三新高考数学人教A版一轮复习教学案:第八章第5节 直线、平面垂直的判定与性质
    立即下载
    加入资料篮
    2021届高三新高考数学人教A版一轮复习教学案:第八章第5节 直线、平面垂直的判定与性质01
    2021届高三新高考数学人教A版一轮复习教学案:第八章第5节 直线、平面垂直的判定与性质02
    2021届高三新高考数学人教A版一轮复习教学案:第八章第5节 直线、平面垂直的判定与性质03
    还剩24页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021届高三新高考数学人教A版一轮复习教学案:第八章第5节 直线、平面垂直的判定与性质

    展开
    
    第5节 直线、平面垂直的判定与性质
    考试要求 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.

    知 识 梳 理
    1.直线与平面垂直
    (1)直线和平面垂直的定义
    如果一条直线l与平面α内的任意直线都垂直,就说直线l与平面α互相垂直.
    (2)判定定理与性质定理

    文字语言
    图形表示
    符号表示
    判定定理
    一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直

    ⇒l⊥α
    性质定理
    两直线垂直于同一个平面,那么这两条直线平行

    ⇒a∥b
    2.直线和平面所成的角
    (1)定义:一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角,一条直线垂直于平面,则它们所成的角是直角;一条直线和平面平行或在平面内,则它们所成的角是0°的角.
    (2)范围:.
    3.二面角
    (1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角;
    (2)二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角.
    (3)二面角的范围:[0,π].
    4.平面与平面垂直
    (1)平面与平面垂直的定义
    两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.
    (2)判定定理与性质定理

    文字语言
    图形表示
    符号表示
    判定定理
    一个平面经过另一个平面的一条垂线,则这两个平面互相垂直

    ⇒α⊥β
    性质定理
    如果两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面

    ⇒l⊥α
    [常用结论与微点提醒]
    1.两个重要结论
    (1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.
    (2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).
    2.使用线面垂直的定义和线面垂直的判定定理,不要误解为“如果一条直线垂直于平面内的无数条直线,就垂直于这个平面”.
    3.三种垂直关系的转化

    诊 断 自 测

    1.判断下列结论正误(在括号内打“√”或“×”)
    (1)直线l与平面α内的无数条直线都垂直,则l⊥α.(  )
    (2)垂直于同一个平面的两平面平行.(  )
    (3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.(  )
    (4)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.(  )
    解析 (1)直线l与平面α内的无数条直线都垂直,则有l⊥α或l与α斜交或l⊂α或l∥α,故(1)错误.
    (2)垂直于同一个平面的两个平面平行或相交,故(2)错误.
    (3)若两个平面垂直,则其中一个平面内的直线可能垂直于另一平面,也可能与另一平面平行,也可能与另一平面相交,也可能在另一平面内,故(3)错误.
    (4)若平面α内的一条直线垂直于平面β内的所有直线,则α⊥β,故(4)错误.
    答案 (1)× (2)× (3)× (4)×

    2.(新教材必修第二册P162T3改编)设α,β为两个不同的平面,直线l⊂α,则“l⊥β”是“α⊥β”成立的(  )
    A.充分不必要条件 B.必要不充分条件
    C.充要条件 D.既不充分也不必要条件
    解析 依题意,由l⊥β,l⊂α,可以推出α⊥β;反过来,由α⊥β,l⊂α不能推出l⊥β,因此“l⊥β”是“α⊥β”成立的充分不必要条件,故选A.
    答案 A
    3.(老教材必修2P67练习T2改编)在三棱锥P-ABC中,点P在平面ABC中的射影为点O.
    (1)若PA=PB=PC,则点O是△ABC的________心;
    (2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心.
    解析 (1)如图1,连接OA,OB,OC,OP,在Rt△POA,Rt△POB和Rt△POC中,PA=PB=PC,所以OA=OB=OC,即O为△ABC的外心.

    图1
    (2)如图2,延长AO,BO,CO分别交BC,AC,AB于H,D,G.因为PC⊥PA,PB⊥PC,PA∩PB=P,所以PC⊥平面PAB,又AB⊂平面PAB,所以PC⊥AB,因为PO⊥AB,PO∩PC=P,所以AB⊥平面PGC,又CG⊂平面PGC,所以AB⊥CG,即CG为△ABC边AB上的高.同理可证BD,AH分别为△ABC边AC,BC上的高,即O为△ABC的垂心.

    图2
    答案 (1)外 (2)垂

    4.(2019·安徽江南十校联考)已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是(  )
    A.α⊥β且m⊂α B.m⊥n且n∥β
    C.m∥n且n⊥β D.m⊥n且α∥β
    解析 由线线平行性质的传递性和线面垂直的判定定理,可知C正确.
    答案 C
    5.(2020·湖南湘东南五校联考)已知两个平面垂直,有下列命题:
    ①一个平面内的已知直线必垂直于另一个平面内的任意一条直线;
    ②一个平面内的已知直线必垂直于另一个平面内的无数条直线;
    ③一个平面内的任一条直线必垂直于另一个平面;
    ④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.
    其中正确命题的个数是(  )
    A.3 B.2 C.1 D.0
    解析 如图,①在正方体ABCD-A1B1C1D1中,平面ADD1A1⊥平面ABCD,A1D⊂平面ADD1A1,BD⊂平面ABCD,但A1D与BD不垂直,故①错;

    ②在正方体ABCD-A1B1C1D1中,平面ADD1A1⊥平面ABCD,l是平
    面ADD1A1内任意一条直线,l与平面ABCD内和AB平行的所有直线垂直,故②正确;
    ③在正方体ABCD-A1B1C1D1中,平面ADD1A1⊥平面ABCD,A1D⊂平面ADD1A1,但A1D与平面ABCD不垂直,故③错;
    ④在正方体ABCD-A1B1C1D1中,平面ADD1A1⊥平面ABCD,且平面ADD1A1∩平面ABCD=AD,过交线AD上的任一点作交线的垂线l,则l可能与平面ABCD垂直,也可能与平面ABCD不垂直,故④错.故选C.
    答案 C
    6.(2017·全国Ⅲ卷)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则(  )
    A.A1E⊥DC1 B.A1E⊥BD
    C.A1E⊥BC1 D.A1E⊥AC
    解析 如图,由题设知,A1B1⊥平面BCC1B1且BC1⊂平面BCC1B1,从而A1B1⊥BC1.
    又B1C⊥BC1,且A1B1∩B1C=B1,所以BC1⊥平面A1B1CD,又A1E⊂平面A1B1CD,所以A1E⊥BC1.

    答案 C

    考点一 线面垂直的判定与性质
    【例1】 (2019·广州一模)在五面体ABCDEF中,四边形CDEF为矩形,CD=2DE=2AD=2AB=4,AC=2,∠EAD=30°.

    (1)求证:AB⊥平面ADE.
    (2)求该五面体的体积.
    (1)证明 因为在五面体ABCDEF中,四边形CDEF为矩形,
    所以EF∥CD,CD⊥DE.
    因为EF⊄平面ABCD,CD⊂平面ABCD,
    所以EF∥平面ABCD.
    因为EF⊂平面ABFE,平面ABFE∩平面ABCD=AB,所以EF∥AB.
    又EF∥CD,所以CD∥AB.
    因为CD=4,AD=2,AC=2,
    ∴AD2+CD2=AC2,所以CD⊥AD.
    又因为CD⊥DE,AD∩DE=D,AD,DE⊂平面ADE,
    所以CD⊥平面ADE.
    又CD∥AB,所以AB⊥平面ADE.
    (2)解 因为∠EAD=30°,AD=DE=2,所以∠ADE=120°,则S△ADE=×2×2×=.如图,延长AB到G,使得AB=BG,连接GF,GC,则S△GCF=S△ADE=,所以VGCF-ADE=×4=4,VB-GCF=××2=,所以VABCDEF=VGCF-ADE-VB-GCF=4-=.

    规律方法 1.证明直线和平面垂直的常用方法有:
    (1)判定定理;(2)垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);(3)面面平行的性质(a⊥α,α∥β⇒a⊥β);(4)面面垂直的性质(α⊥β,α∩β=a,l⊥a,l⊂β⇒l⊥α).
    2.证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思路.
    【训练1】 如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:

    (1)CD⊥AE;
    (2)PD⊥平面ABE.
    证明 (1)在四棱锥P-ABCD中,
    ∵PA⊥底面ABCD,CD⊂平面ABCD,
    ∴PA⊥CD,
    又∵AC⊥CD,且PA∩AC=A,
    ∴CD⊥平面PAC.又AE⊂平面PAC,
    ∴CD⊥AE.
    (2)由PA=AB=BC,∠ABC=60°,可得AC=PA.
    ∵E是PC的中点,∴AE⊥PC.
    由(1)知AE⊥CD,且PC∩CD=C,
    ∴AE⊥平面PCD.又PD⊂平面PCD,∴AE⊥PD.
    ∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥AB.
    又∵AB⊥AD,且PA∩AD=A,
    ∴AB⊥平面PAD,又PD⊂平面PAD,
    ∴AB⊥PD.
    又∵AB∩AE=A,∴PD⊥平面ABE.
    考点二 面面垂直的判定与性质
    【例2】 (2020·江西百所名校模拟)如图,几何体是由半个圆柱及个圆柱拼接而成,其中G,H分别为与的中点,四边形ABCD为正方形.

    (1)证明:平面DFB⊥平面GCBH;
    (2)若AB=2,求三棱锥E-ABG的体积.
    (1)证明 由题意知∠ABF=,因为H为的中点,
    所以∠ABH=,故∠HBF=,
    即BF⊥BH.
    又因为BC⊥平面ABF,BF⊂平面ABF,所以BC⊥BF,
    又因为BC∩BH=B,所以BF⊥平面GCBH,
    因为BF⊂平面DFB,所以平面DFB⊥平面GCBH.
    (2)解 连接AH,AE,BE,EG,FH,如图所示,由图知,

    几何体的体积是VE-ABG=VA-EFHG+VB-EFHG-VF-ABE-VH-ABG=VA-EFHG+VB-EFHG-VE-ABF-VG-ABH,
    因为AB=2,所以BF=4,BH=2,
    由(1)知BF⊥BH,所以FH==2,
    过点A,B分别作FH的垂线,垂足分别为A1,B1,则AA1⊥平面EFHG,BB1⊥平面EFHG.
    计算得AA1==,
    BB1==,
    所以VA-EFHG+VB-EFHG=×2×2×=8,
    又VE-ABF=××2×2×2=,
    VG-ABH=××2×2×2=,
    所以VE-ABG=8--=4.
    规律方法 1.证明平面和平面垂直的方法:(1)面面垂直的定义;(2)面面垂直的判定定理.
    2.已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.
    【训练2】 (2019·长沙模拟)在多面体C-ABDE中,△ABC为等边三角形,四边形ABDE为菱形,平面ABC⊥平面ABDE,AB=2,∠DBA=.

    (1)求证:AB⊥CD;
    (2)求点B到平面CDE的距离.
    (1)证明 如图,取AB的中点O,连接CO,DO,DA.

    ∵△ABC为等边三角形,∴CO⊥AB.
    ∵四边形ABDE为菱形,
    ∠DBA=,
    ∴△DAB为等边三角形,∴DO⊥AB.
    又∵CO∩DO=O,∴AB⊥平面DOC.
    ∵DC⊂平面DOC,∴AB⊥CD.
    (2)解 ∵平面ABDE⊥平面ABC,CO⊥AB,
    平面ABDE∩平面ABC=AB,CO⊂平面ABC,
    ∴CO⊥平面ABDE.
    ∵OD⊂平面ABDE,∴CO⊥OD.
    ∵AB=2,O为AB的中点,∴BO=1.
    在Rt△COD中,∵OD=OC=,
    ∴CD==.
    由(1)得AB⊥CD,又ED∥AB,∴ED⊥DC,
    ∴S△CDE=CD·ED=××2=.
    由题意可得S△BDE=×2×2×sin 120°=.
    设点B到平面CDE的距离为h.
    由VB-CDE=VC-BDE,得S△CDE·h=S△BDE·CO,
    即×h=××,解得h=.
    故点B到平面CDE的距离为.
    考点三 平行与垂直的综合问题 多维探究
    角度1 多面体中平行与垂直关系的证明
    【例3-1】 (2018·北京卷)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.

    (1)求证:PE⊥BC;
    (2)求证:平面PAB⊥平面PCD;
    (3)求证:EF∥平面PCD.
    证明 (1)因为PA=PD,E为AD的中点,
    所以PE⊥AD.
    因为底面ABCD为矩形,
    所以BC∥AD.所以PE⊥BC.
    (2)因为底面ABCD为矩形,所以AB⊥AD.
    又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊂平面ABCD,
    所以AB⊥平面PAD.
    又PD⊂平面PAD,所以AB⊥PD.
    又因为PA⊥PD,且PA∩AB=A,
    所以PD⊥平面PAB.又PD⊂平面PCD,
    所以平面PAB⊥平面PCD.
    (3)如图,取PC中点G,连接FG,DG.

    因为F,G分别为PB,PC的中点,
    所以FG∥BC,FG=BC.
    因为ABCD为矩形,且E为AD的中点,
    所以DE∥BC,DE=BC.
    所以DE∥FG,DE=FG.
    所以四边形DEFG为平行四边形.
    所以EF∥DG.
    又因为EF⊄平面PCD,DG⊂平面PCD,
    所以EF∥平面PCD.
    规律方法 1.三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化.
    2.垂直与平行的结合问题,求解时应注意平行、垂直的性质及判定的综合应用.
    角度2 空间位置关系与几何体的度量计算
    【例3-2】 (2019·浙江卷)如图,已知三棱柱ABC-A1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90°,∠BAC=30°,A1A=A1C=AC,E,F分别是AC,A1B1的中点.

    (1)证明:EF⊥BC;
    (2)求直线EF与平面A1BC所成角的余弦值.
    (1)证明 如图,连接A1E.

    因为A1A=A1C,E是AC的中点,所以A1E⊥AC.
    又平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,
    平面A1ACC1∩平面ABC=AC,
    所以A1E⊥平面ABC,
    又BC⊂平面ABC,
    则A1E⊥BC.
    又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.
    又A1E∩A1F=A1,A1E,A1F⊂平面A1EF,
    所以BC⊥平面A1EF.
    又EF⊂平面A1EF,因此EF⊥BC.
    (2)解 如图,取BC的中点G,连接EG,GF,则四边形EGFA1是平行四边形.
    由于A1E⊥平面ABC,EG⊂平面ABC,故A1E⊥EG,
    所以平行四边形EGFA1为矩形.
    由(1)得BC⊥平面EGFA1,又BC⊂平面A1BC,
    则平面A1BC⊥平面EGFA1,
    所以EF在平面A1BC上的射影在直线A1G上.
    连接A1G交EF于点O,
    则∠EOG是直线EF与平面A1BC所成的角(或其补角).
    不妨设AC=4,则在Rt△A1EG中,A1E=2,EG=.
    由于O为A1G的中点,故EO=OG==,
    所以cos ∠EOG==.
    因此,直线EF与平面A1BC所成角的余弦值是.
    规律方法 利用综合法求空间线线角、线面角、二面角一定注意“作角、证明、计算”是完整统一过程,缺一不可.
    (1)线面角的求法:找出斜线在平面上的射影,关键是作垂线,找垂足,要把线面角转化到一个三角形中求解.
    (2)二面角的大小用它的平面角来度量.平面角的作法常见的有:①定义法;②垂面法.注意利用等腰、等边三角形的性质.
    【训练3】 如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.点E是CD边的中点,点F,G分别在线段AB,BC上,且AF=2FB,CG=2GB.

    (1)证明:PE⊥FG.
    (2)求二面角P-AD-C的正切值.
    (3)求直线PA与直线FG所成角的余弦值.
    (1)证明 因为PD=PC且点E为CD的中点,
    所以PE⊥DC.
    又平面PDC⊥平面ABCD,且平面PDC∩平面ABCD=CD,PE⊂平面PDC,所以PE⊥平面ABCD,
    又FG⊂平面ABCD,所以PE⊥FG.
    (2)解 由(1)知PE⊥平面ABCD,∴PE⊥AD,
    又AD⊥CD,PE∩CD=E,
    ∴AD⊥平面PDC,又PD⊂平面PDC,∴AD⊥PD,
    ∴∠PDC为二面角P-AD-C的平面角,
    在Rt△PDE中,PD=4,DE=3,
    ∴PE==,∴tan∠PDC==.
    故二面角P-AD-C的正切值为.
    (3)解 如图,连接AC,∵AF=2FB,CG=2GB,∴AC∥FG.

    ∴直线PA与FG所成角即直线PA与AC所成角∠PAC.
    在Rt△PDA中,PA2=AD2+PD2=25,∴PA=5.
    又PC=4.
    AC2=CD2+AD2=36+9=45,∴AC=3.
    又cos∠PAC===.
    所以直线PA与直线FG所成角的余弦值为.

    直观想象——立体几何中的动态问题
    1.直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题的素养.
    2.立体几何中的动态问题主要包括:空间动点轨迹的判断,求轨迹的长度及动角的范围等.
    3.一般是根据线、面垂直,线、面平行的判定定理和性质定理,结合圆或圆锥曲线的定义推断出动点的轨迹.
    【例1】 在正方体ABCD-A1B1C1D1中,点M、N分别是直线CD、AB上的动点,点P是△A1C1D内的动点(不包括边界),记直线D1P与MN所成角为θ,若θ的最小值为,则点P的轨迹是(  )

    A.圆的一部分 B.椭圆的一部分
    C.抛物线的一部分 D.双曲线的一部分
    解析 把MN平移到平面A1B1C1D1中,直线D1P与MN所成角为θ,直线D1P与MN所成角的最小值是直线D1P与平面A1B1C1D1所成角,即原问题转化为:直线D1P与平面A1B1C1D1所成角为,点P在平面A1B1C1D1的投影为圆的一部分,因为点P是△A1C1D内的动点(不包括边界),所以点P的轨迹是椭圆的一部分.故选B.

    答案 B
    【例2】 如图,四棱锥P-ABCD的底面是边长为2的正方形,PA⊥平面ABCD,且PA=4,M是PB上的一个动点(不与P,B重合),过点M作平面α∥平面PAD,截棱锥所得图形的面积为y,若平面α与平面PAD之间的距离为x,则函数y=f(x)的图象是(  )


    解析 过M作MN⊥AB,交AB于N,则MN⊥平面ABCD,过N作NQ∥AD,交CD于Q,过Q作QH∥PD,交PC于H,连接MH,

    则平面MNQH是所作的平面α,
    由题意得=,
    解得MN=4-2x,由=.
    即=,解得QH=(2-x),
    过H作HE⊥NQ,在Rt△HEQ中,EQ==2-x,

    ∴NE=2-(2-x)=x,∴MH=x.
    ∴y=f(x)=
    =-x2+4(0 ∴函数y=f(x)的图象如图.故选C.
    答案 C
    【例3】 如图,在棱长为2的正四面体A-BCD中,E、F分别为直线AB、CD上的动点,且EF=.若记EF中点P的轨迹为L,则|L|等于________(注:|L|表示L的测度,在本题,L为曲线、平面图形、空间几何体时,|L|分别对应长度、面积、体积).

    解析 如图,当E为AB中点时,F分别在C,D处,满足EF=,此时EF的中点P在EC,ED的中点P1,P2的位置上;

    当F为CD中点时,E分别在A,B处,满足EF=,此时EF的中点P在BF,AF的中点P3,P4的位置上,
    连接P1P2,P3P4相交于点O,则四点P1,P2,P3,P4共圆,圆心为O,圆的半径为,则EF中点P的轨迹L为以O为圆心,以为半径的圆,其测度|L|=2π×=π.
    答案 π

    A级 基础巩固
    一、选择题
    1.已知a,b表示两条不同的直线,α,β表示两个不同的平面,下列说法错误的是(  )
    A.若a⊥α,b⊥β,α∥β,则a∥b
    B.若a⊥α,b⊥β,a⊥b,则α⊥β
    C.若a⊥α,a⊥b,α∥β,则b∥β
    D.若α∩β=a,a∥b,则b∥α或b∥β
    解析 对于A,若a⊥α,α∥β,则a⊥β,又b⊥β,故a∥b,故A正确;
    对于B,若a⊥α,a⊥b,则b⊂α或b∥α,∴存在直线m⊂α,使得m∥b,
    又b⊥β,∴m⊥β,∴α⊥β.故B正确;
    对于C,若a⊥α,a⊥b,则b⊂α或b∥α,又α∥β,所以b⊂β或b∥β,故C错误;
    对于D,若α∩β=a,a∥b,则b∥α或b∥β,故D正确.
    答案 C
    2.已知P为△ABC所在平面外一点,且PA,PB,PC两两垂直,有下列结论:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC.其中正确的是(  )
    A.①②③ B.①②④
    C.②③④ D.①②③④
    解析 如图,因为PA⊥PB,PA⊥PC,PB∩PC=P,且PB⊂平面PBC,PC⊂平面PBC,所以PA⊥平面PBC.又BC⊂平面PBC,所以PA⊥BC,同理可得PB⊥AC,PC⊥AB,故①②③正确.

    答案 A
    3.(2020·昆明诊断)如图,AC=2R为圆O的直径,∠PCA=45°,PA垂直于圆O所在的平面,B为圆周上不与点A、C重合的点,AS⊥PC于S,AN⊥PB于N,则下列不正确的是(  )

    A.平面ANS⊥平面PBC
    B.平面ANS⊥平面PAB
    C.平面PAB⊥平面PBC
    D.平面ABC⊥平面PAC
    解析 ∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC,
    又AC为圆O直径,所以AB⊥BC,
    又PA∩AB=A,∴BC⊥平面PAB,
    又AN⊂平面ABP,∴BC⊥AN,
    又AN⊥PB,BC∩PB=B,∴AN⊥平面PBC,
    又PC⊂平面PBC,∴AN⊥PC,
    又∵PC⊥AS,AS∩AN=A,∴PC⊥平面ANS,
    又PC⊂平面PBC,∴平面ANS⊥平面PBC,
    ∴A正确,C,D显然正确,故选B.
    答案 B
    4.在△ABC中,∠CAB=90°,AC=1,AB=.将△ABC绕BC旋转,使得点A转到点P,如图.若D为BC的中点,E为PC的中点,AE=,则AB与平面ADE所成角的正弦值是(  )

    A. B. C. D.
    解析 因为D,E分别是BC和PC的中点,所以DE∥PB,又∠CAB=90°,所以DE⊥PC,又AC=1,CE=,AE=,所以AE2+CE2=AC2,即AE⊥PC,又DE∩AE=E,所以PC⊥平面ADE,如图,延长ED至F,使得EF=PB,连接BF,所以BF⊥平面AED,连接AF,所以∠BAF为AB与平面ADE所成的角,所以sin ∠BAF===.

    答案 B
    5.(2019·全国Ⅲ卷)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则(  )

    A.BM=EN,且直线BM,EN是相交直线
    B.BM≠EN,且直线BM,EN是相交直线
    C.BM=EN,且直线BM,EN是异面直线
    D.BM≠EN,且直线BM,EN是异面直线
    解析 取CD的中点O,连接ON,EO,因为△ECD为正三角形,所以EO⊥CD,又平面ECD⊥平面ABCD,平面ECD∩平面ABCD=CD,EO⊂平面ECD,所以EO⊥平面ABCD.设正方形ABCD的边长为2,则EO=,ON=1,所以EN2=EO2+ON2=4,得EN=2.过M作CD的垂线,垂足为P,连接BP,则MP=,CP=,所以BM2=MP2+BP2=++22=7,得BM=,所以BM≠EN.连接BD,BE,因为四边形ABCD为正方形,所以N为BD的中点,即EN,MB均在平面BDE内,所以直线BM,EN是相交直线,故选B.
    答案 B
    二、填空题
    6.(多填题)如图,已知∠BAC=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中,与PC垂直的直线有____________;与AP垂直的直线有____________.

    解析 因为PC⊥平面ABC,所以PC垂直于直线AB,BC,AC.因为AB⊥AC,AB⊥PC,AC∩PC=C,所以AB⊥平面PAC,又因为AP⊂平面PAC,所以AB⊥AP,与AP垂直的直线是AB.
    答案 AB,BC,AC AB
    7.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD(只要填写一个你认为是正确的条件即可).

    解析 连接AC,BD,则AC⊥BD,因为PA⊥底面ABCD,BD⊂平面ABCD,所以PA⊥BD.又PA∩AC=A,所以BD⊥平面PAC,PC⊂平面PAC,所以BD⊥PC.所以当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.而PC⊂平面PCD,所以平面MBD⊥平面PCD.

    答案 DM⊥PC(或BM⊥PC)
    8.如图所示,在四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A′BCD,使平面A′BD⊥平面BCD,则下列结论正确的是________(填序号).

    ①A′C⊥BD;②∠BA′C=90°;③四面体A′BCD的体积为.
    解析 ∵BD⊥CD,平面A′BD⊥平面BCD,平面A′BD∩平面BCD=BD,CD⊂平面BCD,
    ∴CD⊥平面A′BD,又A′D⊂平面A′BD,∴CD⊥A′D.
    ∵AB=AD=CD=1,BD=,
    ∴A′C=,BC=,∴A′B2+A′C2=BC2,
    ∴A′B⊥A′C,即∠BA′C=90°,
    四面体A′BCD的体积V=××12×1=.
    答案 ②③
    三、解答题
    9.(2019·石家庄摸底)如图,在多面体ABCDPE中,四边形ABCD和CDPE都是直角梯形,AB∥DC,PE∥DC,AD⊥DC,PD⊥平面ABCD,AB=PD=DA=2PE,CD=3PE,F是CE的中点.

    (1)求证:BF∥平面ADP;
    (2)已知O是BD的中点,求证:BD⊥平面AOF.
    证明 (1)如图,取PD的中点为G,连接FG,AG.

    ∵F是CE的中点,∴FG是梯形CDPE的中位线,
    ∵CD=3PE,
    ∴FG=2PE,FG∥CD.
    ∵CD∥AB,AB=2PE,
    ∴AB∥FG,AB=FG,即四边形ABFG是平行四边形,
    ∴BF∥AG,又BF⊄平面ADP,AG⊂平面ADP,
    ∴BF∥平面ADP.
    (2)延长AO交CD于M,连接BM,FM.
    ∵BA⊥AD,CD⊥DA,AB=AD,O为BD的中点,
    ∴四边形ABMD是正方形,则BD⊥AM,MD=2PE,
    ∴FM∥PD.
    ∵PD⊥平面ABCD,∴FM⊥平面ABCD,
    又BD⊂平面ABCD,∴FM⊥BD,
    ∵AM∩FM=M,∴BD⊥平面AMF,
    ∴BD⊥平面AOF.
    10. (2020·潍坊调研)如图,四棱锥E-ABCD中,底面ABCD是平行四边形,∠ADC=60°,CD=2AD,EC⊥底面ABCD.

    (1)求证:平面ADE⊥平面ACE;
    (2)(一题多解)若AD=CE=2,求三棱锥C-ADE的高.
    (1)证明 ∵在▱ABCD中,∠ADC=60°,CD=2AD,
    ∴在△ACD中,由余弦定理,得
    AC=
    ==AD,
    ∴AD2+AC2=CD2,∴∠DAC=90°,故AD⊥AC.
    ∵EC⊥底面ABCD,AD⊂平面ABCD,∴EC⊥AD.
    又∵EC∩AC=C,AC,EC⊂平面ACE,∴AD⊥平面ACE.
    ∵AD⊂平面ADE,∴平面ADE⊥平面ACE.
    (2)解 ∵AD=2,∴CD=4.
    由(1)知AC=AD,∴AC=2,∴AE==4.
    法一 设三棱锥C-ADE的高为h.
    由(1)知AD⊥平面ACE,
    ∴由VD-ACE=VC-ADE,得·AD·S△ACE=·h·S△ADE,
    即×2××2×2=·h·×2×4,
    解得h=.
    ∴三棱锥C-ADE的高为.
    法二 在△ACE内,过点C作CF⊥AE,垂足为F.
    由(1)知,平面AED⊥平面ACE,又平面ADE∩平面ACE=AE,
    ∴CF⊥平面ADE,∴CF为三棱锥C-ADE的高.
    在Rt△ACE中,CF·AE=AC·CE,即CF×4=2×2,解得CF=.
    ∴三棱锥C-ADE的高为.
    B级 能力提升
    11.(2019·南昌二中月考)在空间四边形ABCD中,若AB⊥CD,BC⊥AD,则对角线AC与BD的位置关系为(  )
    A.相交但不垂直 B.垂直但不相交
    C.不相交也不垂直 D.无法判断
    解析 如图所示,作AO⊥平面BCD,又CD⊂平面BCD,∴AO⊥CD,又知AB⊥CD,AB∩AO=A,∴CD⊥平面ABO.又OB⊂平面ABO,∴CD⊥OB,同理可得OD⊥BC,∴O为△BCD的垂心,∴OC⊥BD.又知AO⊥BD,AO∩OC=O,∴BD⊥平面AOC.又AC⊂平面AOC,∴BD⊥AC.又AC与BD是异面直线,所以AC与BD垂直但不相交,故选B.

    答案 B
    12.(2020·大连一中月考)如图,正三角形ABC的中线AF与中位线DE相交于点G,已知△A′DE是△ADE绕直线DE翻折过程中的一个图形,现给出下列命题:①恒有直线BC∥平面A′DE;②恒有直线DE⊥平面A′FG;③恒有平面A′FG⊥平面A′DE,其中正确命题的个数为(  )

    A.0 B.1 C.2 D.3
    解析 对于①,∵DE为△ABC的中位线,∴DE∥BC,又知DE⊂平面A′DE,BC⊄平面A′DE,∴BC∥平面A′DE,故①正确;对于②,∵△ABC为等边三角形,AF为BC边上的中线,∴BC⊥AF,又知DE∥BC,∴DE⊥AF,∴DE⊥FG,根据翻折的性质可知,DE⊥A′G,又A′G∩FG=G,∴DE⊥平面A′FG,故②正确;对于③,由②知DE⊥平面A′FG,又知DE⊂平面A′DE,∴平面A′FG⊥平面A′DE,故③正确.综上,正确的命题为①②③.
    答案 D
    13.如图,在直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E,要使AB1⊥平面C1DF,则线段B1F的长为________.

    解析 设B1F=x,
    因为AB1⊥平面C1DF,DF⊂平面C1DF,
    所以AB1⊥DF,
    由已知可得A1B1=,
    设Rt△AA1B1斜边AB1上的高为h,则DE=h.
    又×2×=×h,
    所以h=,DE=.
    在Rt△DB1E中,B1E==.
    由面积相等得××=×x,
    得x=.
    答案 
    14.如图①,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图②所示的几何体.

    (1)求证:AB⊥平面ADC;
    (2)若AD=1,AC与其在平面ABD内的正投影所成角的正切值为,求点B到平面ADE的距离.
    (1)证明 因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BD⊥DC,DC⊂平面BCD,所以DC⊥平面ABD.
    因为AB⊂平面ABD,所以DC⊥AB,
    又因为AD⊥AB,且DC∩AD=D,
    所以AB⊥平面ADC.
    (2)解 由(1)知DC⊥平面ABD,所以AC在平面ABD内的正投影为AD,即∠DAC为AC与其在平面ABD内的正投影所成角.
    依题意得tan∠DAC==,
    因为AD=1,所以CD=,
    设AB=x(x>0),则BD=,
    因为△ABD∽△DCB,所以=,即=,
    解得x=,故AB=,BD=,BC=3.
    由于AB⊥平面ADC,AC⊂平面ADC,
    所以AB⊥AC,又E为BC的中点,
    所以由平面几何知识得AE==,
    因为BD⊥DC,E为BC的中点,所以DE==,
    所以S△ADE=×1×=.
    因为DC⊥平面ABD,
    所以VA-BCD=VC-ABD=CD·S△ABD=.
    设点B到平面ADE的距离为d.
    则由d·S△ADE=VB-ADE=VA-BDE=VA-BCD=,
    得d=,
    即点B到平面ADE的距离为.
    C级 创新猜想
    15.(开放题)(2019·北京卷)已知l,m是平面α外的两条不同直线.给出下列三个论断:
    ①l⊥m;②m∥α;③l⊥α.
    以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:________.
    解析 已知l,m是平面α外的两条不同直线,由①l⊥m与②m∥α,不能推出③l⊥α,因为l可以与α平行,也可以相交不垂直;由①l⊥m与③l⊥α能推出②m∥α;由②m∥α与③l⊥α可以推出①l⊥m.故正确的命题是②③⇒①或①③⇒②.
    答案 若m∥α,l⊥α,则l⊥m(或若l⊥m,l⊥α,则m∥α,答案不唯一)
    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021届高三新高考数学人教A版一轮复习教学案:第八章第5节 直线、平面垂直的判定与性质
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map