2020版高考新创新一轮复习数学新课改省份专用讲义:第三章第二节 第3课时 题型研究——“函数与导数”大题常考的3类题型
展开第3课时 题型研究——“函数与导数”大题常考的3类题型
利用导数研究函数的单调性 |
利用导数研究函数的单调性是高考的热点和重点,一般为解答题的第一问,若不含参数,难度一般,若含参数,则较难.
常见的考法有:(1)求函数的单调区间.(2)讨论函数的单调性.(3)由函数的单调性求参数.
考法一 求函数的单调区间
[例1] (2018·湘东五校联考节选)已知函数f(x)=(ln x-k-1)x(k∈R).当x>1时,求f(x)的单调区间.
[解] f′(x)=·x+ln x-k-1=ln x-k,
①当k≤0时,因为x>1,所以f′(x)=ln x-k>0,
所以函数f(x)的单调递增区间是(1,+∞),无单调递减区间.
②当k>0时,令ln x-k=0,解得x=ek,
当1<x<ek时,f′(x)<0;当x>ek时,f′(x)>0.
所以函数f(x)的单调递减区间是(1,ek),单调递增区间是(ek,+∞).
综上所述,当k≤0时,函数f(x)的单调递增区间是(1,+∞),无单调递减区间;当k>0时,函数f(x)的单调递减区间是(1,ek),单调递增区间是(ek,+∞).
[方法技巧]
利用导数求函数单调区间的方法
(1)当导函数不等式可解时,解不等式f′(x)>0或f′(x)<0求出单调区间.
(2)当方程f′(x)=0可解时,解出方程的实根,依照实根把函数的定义域划分为几个区间,确定各区间f′(x)的符号,从而确定单调区间.
(3)若导函数的方程、不等式都不可解,根据f′(x)结构特征,利用图象与性质确定f′(x)的符号,从而确定单调区间.
[针对训练]
(2019·湖南、江西十四校联考)已知f(x)=(x2-ax)ln x-x2+2ax,求f(x)的单调 递减区间.
解:易得f(x)的定义域为(0,+∞),
f′(x)=(2x-a)ln x+x-a-3x+2a=(2x-a)ln x-(2x-a)=(2x-a)(ln x-1),
令f′(x)=0得x=或x=e.
当a≤0时,因为x>0,所以2x-a>0,
令f′(x)<0得x<e,所以f(x)的单调递减区间为(0,e).
当a>0时,
①若<e,即0<a<2e,当x∈时,f′(x)>0,当x∈时,f′(x)<0,当x∈(e,+∞)时,f′(x)>0,所以f(x)的单调递减区间为;
②若=e,即a=2e,当x∈(0,+∞)时,f′(x)≥0恒成立,f(x)没有单调递减区间;
③若>e,即a>2e,当x∈(0,e)时,f′(x)>0,当x∈时,f′(x)<0,当x∈时,f′(x)>0,所以f(x)的单调递减区间为.
综上所述,当a≤0时,f(x)的单调递减区间为(0,e);当0<a<2e时,f(x)的单调递减区间为;当a=2e时,f(x)无单调递减区间;当a>2e时,f(x)的单调递减区间为.
考法二 讨论函数的单调性
[例2] 已知函数f(x)=ln x+-(a∈R且a≠0),讨论函数f(x)的单调性.
[解] f′(x)=(x>0),
①当a<0时,f′(x)>0恒成立,
∴函数f(x)在(0,+∞)上单调递增.
②当a>0时,由f′(x)=>0,得x>;
由f′(x)=<0,得0<x<,
∴函数f(x)在上单调递增,在上单调递减.
综上所述,当a<0时,函数f(x)在(0,+∞)上单调递增;
当a>0时,函数f(x)在上单调递增,在上单调递减.
[方法技巧]
讨论函数f(x)单调性的步骤
(1)确定函数f(x)的定义域;
(2)求导数f′(x),并求方程f′(x)=0的根;
(3)利用f′(x)=0的根将函数的定义域分成若干个子区间,在这些子区间上讨论f′(x)的正负,由符号确定f(x)在该区间上的单调性.
[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.
[针对训练]
已知函数f(x)=1-ln x+a2x2-ax(a∈R),讨论函数f(x)的单调性.
解:函数f(x)的定义域为(0,+∞),
f′(x)=-+2a2x-a==.
①若a=0,则f′(x)<0,f(x)在(0,+∞)上单调递减.
②若a>0,则当x=时,f′(x)=0,
当0<x<时,f′(x)<0;
当x>时,f′(x)>0.
故f(x)在上单调递减,在上单调递增.
③若a<0,则当x=-时,f′(x)=0,
当0<x<-时,f′(x)<0;
当x>-时,f′(x)>0.
故f(x)在上单调递减,在上单调递增.
综上所述,当a=0时,f(x)在(0,+∞)上单调递减;
当a>0时,f(x)在上单调递减,在上单调递增;
当a<0时,f(x)在上单调递减,在上单调递增.
考法三 由函数的单调性求参数
[例3] 设函数f(x)=x3-x2+bx+c,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.
(1)求b,c的值;
(2)设函数g(x)=f(x)+2x,且g(x)在区间(-2,-1)内存在单调递减区间,求实数a的取值范围.
[解] (1)f′(x)=x2-ax+b,
由题意得即
(2)由(1)知f(x)=x3-x2+1,
则g′(x)=x2-ax+2,依题意,存在x∈(-2,-1),
使不等式g′(x)=x2-ax+2<0成立,
即x∈(-2,-1)时,a<max=-2,
当且仅当x=,即x=-时等号成立.
所以满足要求的a的取值范围是(-∞,-2).
[方法技巧]
由函数的单调性求参数的取值范围的方法
(1)由可导函数f(x)在D上单调递增(或递减)求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)对x∈D恒成立问题,再参变分离,转化为求最值问题,要注意“=”是否取到.
(2)可导函数在某一区间上存在单调区间,实际上就是f′(x)>0(或f′(x)<0)在该区间上存在解集,这样就把函数的单调性问题转化成不等式问题.
(3)若已知f(x)在区间I上的单调性,区间I中含有参数时,可先求出f(x)的单调区间,令I是其单调区间的子集,从而可求出参数的取值范围.
[针对训练]
已知函数f(x)=aln x+x2+(a+1)x+3.
(1)当a=-1时,求函数f(x)的单调递减区间;
(2)若函数f(x)在区间(0,+∞)上是增函数,求实数a的取值范围.
解:(1)当a=-1时,f(x)=-ln x+x2+3,定义域为(0,+∞),
则f′(x)=-+x=.
由得0<x<1.
所以函数f(x)的单调递减区间为(0,1).
(2)法一:因为函数f(x)在(0,+∞)上是增函数,
所以f′(x)=+x+a+1≥0在(0,+∞)上恒成立,
所以x2+(a+1)x+a≥0,即(x+1)(x+a)≥0在(0,+∞)上恒成立.
因为x+1>0,所以x+a≥0对x∈(0,+∞)恒成立,
所以a≥0,故实数a的取值范围是[0,+∞).
法二:因为函数f(x)在(0,+∞)上是增函数,
所以f′(x)=+x+a+1≥0在(0,+∞)上恒成立,
即x2+(a+1)x+a≥0在(0,+∞)上恒成立.
令g(x)=x2+(a+1)x+a,
因为Δ=(a+1)2-4a≥0恒成立,
所以即a≥0,
所以实数a的取值范围是[0,+∞).
利用导数研究函数的零点或方程根 |
[典例] (2019·安徽十大名校联考)设函数f(x)=ex-x2-ax-1(e为自然对数的底数),a∈R.
(1)证明:当a<2-2ln 2时,f′(x)没有零点;
(2)当x>0时,f(x)+x≥0恒成立,求a的取值范围.
[解] (1)证明:∵f′(x)=ex-2x-a,令g(x)=f′(x),
∴g′(x)=ex-2.令g′(x)<0,解得x<ln 2;
令g′(x)>0,解得x>ln 2,
∴f′(x)在(-∞,ln 2)上单调递减,在(ln 2,+∞)上单调递增,
∴f′(x)min=f′(ln 2)=2-2ln 2-a.
当a<2-2ln 2时,f′(x)min>0,
∴f′(x)的图象恒在x轴上方,∴f′(x)没有零点.
(2)当x>0时,f(x)+x≥0恒成立,即ex-x2-ax+x-1≥0恒成立,
∴ax≤ex-x2+x-1,即a≤-x-+1恒成立.
令h(x)=-x-+1(x>0),
则h′(x)=.
当x>0时,ex-x-1>0恒成立,
令h′(x)<0,解得0<x<1,令h′(x)>0,解得x>1,
∴h(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
∴h(x)min=h(1)=e-1.
∴a的取值范围是(-∞,e-1].
[方法技巧]
利用导数研究方程根(函数零点)的技巧
(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等;
(2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置;
(3)利用数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.
[针对训练]
(2019·武汉调研)已知函数f(x)=ex-ax-1(a∈R)(e=2.718 28…是自然对数的底数).
(1)求f(x)的单调区间;
(2)讨论g(x)=f(x)在区间[0,1]上零点的个数.
解:(1)∵f(x)=ex-ax-1,∴f′(x)=ex-a,当a≤0时,f′(x)>0恒成立,
∴f(x)的单调递增区间为(-∞,+∞),无单调递减区间;
当a>0时,令f′(x)<0,得x<ln a,
令f′(x)>0,得x>ln a,
∴f(x)的单调递减区间为(-∞,ln a),单调递增区间为(ln a,+∞).
(2)令g(x)=0,得f(x)=0或x=,
先考虑f(x)在区间[0,1]上的零点个数,
①当a≤1时,f(x)在[0,1]上单调递增且f(0)=0,
∴f(x)在[0,1]上有一个零点;
②当a≥e时,f(x)在[0,1]上单调递减且f(0)=0,
∴f(x)在[0,1]上有一个零点;
③当1<a<e时,f(x)在[0,ln a)上单调递减,在(ln a,1]上单调递增,
而f(1)=e-a-1,当e-a-1≥0,即1<a≤e-1时,f(x)在[0,1]上有两个零点,
当e-a-1<0,即e-1<a<e时,f(x)在[0,1]上有一个零点.
当x=时,由f=0得a=2(-1).
∴当a≤1或a>e-1或a=2(-1)时,g(x)在[0,1]上有两个零点;
当1<a≤e-1且a≠2(-1)时,g(x)在[0,1]上有三个零点.
利用导数研究不等式 |
导数在不等式中的应用问题是每年高考的必考内容,且以解答题的形式考查,难度较大,属中、高档题.
常见的考法有:(1)证明不等式.(2)不等式恒成立问题.(3)存在型不等式成立问题.
考法一 证明不等式
[例1] (2018·全国卷Ⅲ)已知函数f(x)=.
(1)求曲线y=f(x)在点(0,-1)处的切线方程;
(2)证明:当a≥1时,f(x)+e≥0.
[解] (1)因为f′(x)=,
所以f′(0)=2,f(0)=-1,
所以曲线y=f(x)在(0,-1)处的切线方程是y+1=2x,即2x-y-1=0.
(2)证明:当a≥1时,
f(x)+e≥(x2+x-1+ex+1)e-x.
令g(x)=x2+x-1+ex+1,
则g′(x)=2x+1+ex+1.
当x<-1时,g′(x)<0,g(x)单调递减;
当x>-1时,g′(x)>0,g(x)单调递增.
所以g(x)≥g(-1)=0.
因此f(x)+e≥0.
[方法技巧]
1.利用导数证明不等式f(x)>g(x)的基本方法
(1)若f(x)与g(x)的最值易求出,可直接转化为证明f(x)min>g(x)max;
(2)若f(x)与g(x)的最值不易求出,可构造函数h(x)=f(x)-g(x),然后根据函数h(x)的单调性或最值,证明h(x)>0.
2.证明不等式时的一些常见结论
(1)ln x≥x-1,等号当且仅当x=1时取到;
(2)ex≥x+1,等号当且仅当x=0时取到;
(3)ln x<x<ex,x>0;
(4)≤ln(x+1)≤x,x>-1,等号当且仅当x=0时取到.
[针对训练]
(2018·广西柳州毕业班摸底)已知函数f(x)=ax+xln x在x=e-2(e为自然对数的底数)处取得极小值.
(1)求实数a的值;
(2)当x>1时,求证:f(x)>3(x-1).
解:(1)因为f(x)=ax+xln x,
所以f′(x)=a+ln x+1,
因为函数f(x)在x=e-2处取得极小值,
所以f′(e-2)=0,即a+ln e-2+1=0,
所以a=1,所以f′(x)=ln x+2.
当f′(x)>0时,x>e-2;当f′(x)<0时,0<x<e-2,
所以f(x)在(0,e-2)上单调递减,在(e-2,+∞)上单调递增,
所以f(x)在x=e-2处取得极小值,符合题意,所以a=1.
(2)证明:由(1)知a=1,所以f(x)=x+xln x.
令g(x)=f(x)-3(x-1),
即g(x)=xln x-2x+3(x>0).
g′(x)=ln x-1,由g′(x)=0,得x=e.
由g′(x)>0,得x>e;由g′(x)<0,得0<x<e.
所以g(x)在(0,e)上单调递减,在(e,+∞)上单调递增,
所以g(x)在(1,+∞)上的最小值为g(e)=3-e>0.
于是在(1,+∞)上,都有g(x)≥g(e)>0,所以f(x)>3(x-1).
考法二 不等式恒成立问题
[例2] (2019·安徽江淮十校联考)已知函数f(x)=xln x(x>0).
(1)求f(x)的单调区间和极值;
(2)若对任意x∈(0,+∞),f(x)≥恒成立,求实数m的最大值.
[解] (1)由题意知f′(x)=ln x+1,
令f′(x)>0,得x>,令f′(x)<0,得0<x<,
∴f(x)的单调递增区间是,单调递减区间是,
f(x)在x=处取得极小值,极小值为f=-,无极大值.
(2)由f(x)≥及f(x)=xln x,
得m≤,
问题转化为m≤min.
令g(x)=(x>0),
则g′(x)=,
由g′(x)>0⇒x>1,由g′(x)<0⇒0<x<1.
所以g(x)在(0,1)上是减函数,在(1,+∞)上是增函数,
所以g(x)min=g(1)=4,
即m≤4,所以m的最大值是4.
[方法技巧]
不等式恒成立问题的求解策略
(1)已知不等式f(x,λ)≥0(λ为实参数)对任意的x∈D恒成立,求参数λ的取值范围.利用导数解决此类问题可以运用分离参数法,其一般步骤如下:
(2)如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(a>0,Δ<0或a<0,Δ<0)求解.
[针对训练]
设函数f(x)=x2+4x+2,g(x)=2ex(x+1),若x≥-2时,f(x)≤kg(x),求k的取值范围.
解:令F(x)=kg(x)-f(x)=2kex(x+1)-x2-4x-2.
F(0)=2k-2≥0⇒k≥1,F(-2)=-2ke-2+2≥0⇒k≤e2,所以1≤k≤e2.
由F′(x)=2(x+2)(kex-1)=0⇒x1=-2,x2=-ln k≥-2.
①当k=e2时,F′(x)=2(x+2)(ex+2-1)≥0,
所以F(x)在[-2,+∞)递增,
所以F(x)≥F(-2)=0.
②当1≤k<e2时,
x | (-2,-ln k) | (-ln k,+∞) |
F′(x) | - | + |
F(x)min=F(-ln k)=ln k(2-ln k)≥0.
综上,1≤k≤e2.
考法三 不等式存在性问题
(1)f(x)>g(x)对x∈I能成立⇔I与f(x)>g(x)的解集的交集不是空集⇔[f(x)-g(x)]max>0(x∈I).
(2)对∀x1∈D1,∃x2∈D2使得f(x1)≥g(x2)⇔f(x)min≥g(x)min,f(x)的定义域为D1,g(x)的定义域为D2.
[例3] (2019·云南统考)已知函数f(x)=-ax(a>0).
(1)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;
(2)若∃x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立,求实数a的取值范围.
[解] (1)因为f(x)在(1,+∞)上为减函数,
所以f′(x)=-a≤0在(1,+∞)上恒成立.
所以当x∈(1,+∞)时,f′(x)max≤0.
又f′(x)=-a=-2+-a,
故当=,即x=e2时,f′(x)max=-a,
所以-a≤0,故a≥,所以a的最小值为.
(2)“若∃x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立”等价于当x∈[e,e2]时,有
f(x)min≤f′(x)max+a,
当x∈[e,e2]时,有f′(x)max+a=,
问题等价于:“当x∈[e,e2]时,有f(x)min≤”.
①当a≥时,f(x)在[e,e2]上为减函数,
则f(x)min=f(e2)=-ae2≤,故a≥-.
②当0<a<时,由于f′(x)=-2+-a在[e,e2]上为增函数,
故f′(x)的值域为[f′(e),f′(e2)],即.
由f′(x)的单调性和值域知,存在唯一x0∈(e,e2),使f′(x0)=0,且满足:
当x∈(e,x0)时,f′(x)<0,f(x)为减函数;
当x∈(x0,e2)时,f′(x)>0,f(x)为增函数.
所以f(x)min=f(x0)=-ax0≤,x0∈(e,e2),
所以a≥->->-=,
与0<a<矛盾,不合题意.
综上,实数a的取值范围为.
[方法技巧]
不等式存在性问题的求解策略
“恒成立”与“存在性”问题的求解是“互补”关系,即f(x)≥g(a)对于x∈D恒成立,应求f(x)的最小值;若存在x∈D,使得f(x)≥g(a)成立,应求f(x)的最大值.在具体问题中究竟是求最大值还是最小值,可以先联想“恒成立”是求最大值还是最小值,这样也就可以解决相应的“存在性”问题是求最大值还是最小值.特别需要关注等号是否成立,以免细节出错.
[针对训练]
(2019·郑州模拟)已知函数f(x)=ln x-a(x+1),a∈R在(1,f(1))处的切线与x轴平行.
(1)求f(x)的单调区间;
(2)若存在x0>1,当x∈(1,x0)时,恒有f(x)-+2x+>k(x-1)成立,求k的取值范围.
解:(1)由已知可得f(x)的定义域为(0,+∞).
∵f′(x)=-a,∴f′(1)=1-a=0,∴a=1,
∴f′(x)=-1=.
令f′(x)>0,得0<x<1;令f′(x)<0,得x>1.
∴f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).
(2)不等式f(x)-+2x+>k(x-1)可化为
ln x-+x->k(x-1).
令g(x)=ln x-+x--k(x-1),x>1,
则g′(x)=-x+1-k=.
∵x>1,令h(x)=-x2+(1-k)x+1,
h(x)的对称轴为x=,
①当≤1,即k≥-1时,易知h(x)在(1,x0)上单调递减,
∴h(x)<h(1)=1-k.
若k≥1,则h(x)≤0,∴g′(x)≤0,∴g(x)在(1,x0)上单调递减,
∴g(x)<g(1)=0,不符合题意.
若-1≤k<1,则h(1)>0,∴必存在x0使得x∈(1,x0)时g′(x)>0,
∴g(x)在(1,x0)上单调递增,
∴g(x)>g(1)=0恒成立,符合题意.
②当>1,即k<-1时,易知必存在x0使得h(x)在 (1,x0)上单调递增,∴h(x)>h(1)=1-k>0,∴g′(x)>0,
∴g(x)在(1,x0)上单调递增,∴g(x)>g(1)=0恒成立,符合题意.
综上,k的取值范围是(-∞,1).