|学案下载
搜索
    上传资料 赚现金
    2020届二轮复习极值点处单调变,导数调控讨论参学案(全国通用)
    立即下载
    加入资料篮
    2020届二轮复习极值点处单调变,导数调控讨论参学案(全国通用)01
    2020届二轮复习极值点处单调变,导数调控讨论参学案(全国通用)02
    2020届二轮复习极值点处单调变,导数调控讨论参学案(全国通用)03
    还剩3页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020届二轮复习极值点处单调变,导数调控讨论参学案(全国通用)

    展开

    题型综述

    函数极值问题的常见类型及解题策略

    1)函数极值的判断:先确定导数为0的点,再判断导数为0的点的左、右两侧的导数符号.

    2)求函数极值的方法

    ①确定函数的定义域.

    ②求导函数

    ③求方程的根.

    ④检查在方程的根的左右两侧的符号,确定极值点.如果左正右负,那么在这个根处取得极大值如果左负右正,那么在这个根处取得极小值如果在这个根的左右两侧符号不变,则在这个根处没有极值.

    3)利用极值求参数的取值范围:确定函数的定义域,求导数,求方程的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围.

    【典例指引】

    1已知函数

    1)求函数的极值;

    【思路引导】

    试题分析:(1)求得,可分两种情况分类讨论,得出函数的单调性,即可求得函数的极值;

    上单调递减;

    上单调递增.

    处取得极小值,且极小值为,无极小值.

    综上,当时,函数无极值;*

    时, 有极小值为,无极大值.

    点评:本题主要考查了导数在函数中的综合应用问题,其中解答中涉及到利用导数研究函数的单调性,利用导数求解函数的极值,以及函数与方程思想的应用,试题综合性较强,属于中档试题,此类问题的解答中正确把握导数与函数性质的关系是解答关键,同时准确求解函数的导数也是一个重要的环节.

    2.已知函数

    1)当时,求曲线在点处的切线方程;

    2)讨论函数的单调性并判断有无极值,有极值时求出极值.

    【思路引导】

    1欲求曲线在点处的切线方程,只需求出斜率和和的值,即可利用直线的点斜式方程求解切线的方程;

    2)求出通过讨论的取值范围,求出函数的单调区间,从而求出函数的极值即可,可分两种情况,求出函数的单调区间,得出函数的极值

    点评:本题主要考查导数在函数中的综合应用,本题的解答中涉及利用导数的几何意义求解曲线在某点处的切线方程,利用导数研究函数的单调性和极值,求解函数的单调区间,涉及到分类讨论的数思想的应用,熟记利用导数研究函数的性质是解答的关键,试题有一定的难度,属于中档试题.

    3.已知,其中

    1)若,且曲线处的切线过原点,求直线的方程;

    2)求的极值;

    3)若函数有两个极值点 ,证明

    【思路引导】

    )当a=0时,求得fx)的解析式和导数,可得切线的斜率和切点,由点斜式方程可得切线的方程;()求得fx)的导数,可得有两个不同的实根,讨论当a≤0时,当a>0时,判断单调性可得极大值大于0,解不等式即可得到所求范围;()由()知当时,有两个极值 ,构造函数对不等式进行证明.

    上单调递增,

    上单调递减,时取到极大值,

    时取到极小值,且

    恒成立,上单调递增,没有极大值也没有极小值;

    上单调递增,

    上单调递减,时取到极小值,且时取到极大值,且

    综上可得,当时,时取到极小值没有极大值;

    时,时取到极大值,在时取到极小值

    时,没有极大值也没有极小值;当时,时取到极小值

    时取到极大值*

    )由()知当时,有两个极值

    所以

    ,则,所以上单调递减,在上单调递增,

    可得,所以

    *

    点评:本题考查导数的运用,利用导数研究函数的极值 ,利用导数研究曲线上某点切线方程,求切线方程和单调区间、极值,主要考查导数的几何意义和分类讨论的思想方法,注意函数的单调性的运用,属于中档题.

    4.已知函数

    )若,求曲线处的切线方程;

    )探究函数的极值点情况,并说明理由.

    【思路引导】

    1)先求函数导数,根据导数几何意义得切线斜率,再根据点斜式写出切线方程(2)先求导数,转化研究函数,利用导数易得先减后增,讨论与两个端点值以及最小值点大小关系,确定极值点情况.

    ii)当,即时,有两不同解,函数上有两个极值点;

    iii)当,即时,有一解,函数在区间上有一个极值点;

    iv)当,即时,,函数在区间上无极值点.*

     

     

     

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map