还剩13页未读,
继续阅读
2019届二轮复习第八章第3节 空间点、直线、平面之间的位置关系学案(全国通用)
展开
第3节 空间点、直线、平面之间的位置关系
最新考纲 1.理解空间直线、平面位置关系的定义;2.了解可以作为推理依据的公理和定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.
知 识 梳 理
1.平面的基本性质
(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
(2)公理2:过不在同一条直线上的三点,有且只有一个平面.
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
2.空间点、直线、平面之间的位置关系
直线与直线
直线与平面
平面与平面
平行关系
图形
语言
符号
语言
a∥b
a∥α
α∥β
相交关系
图形
语言
符号
语言
a∩b=A
a∩α=A
α∩β=l
独有关系
图形
语言
符号
语言
a,b是异面直线
a⊂α
3.平行公理(公理4)和等角定理
平行公理:平行于同一条直线的两条直线互相平行.
等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
4.异面直线所成的角
(1)定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).
(2)范围:.
[常用结论与微点提醒]
1.空间中两个角的两边分别对应平行,则两个角相等或互补.
2.异面直线的判定:经过平面内一点的直线与平面内不经过该点的直线互为异面直线.
3.唯一性的几个结论:
(1)过直线外一点有且只有一个平面与已知直线垂直.
(2)过平面外一点有且只有一个平面与已知平面平行.
(3)过平面外一点有且只有一条直线与已知平面垂直.
诊 断 自 测
1.思考辨析(在括号内打“√”或“×”)
(1)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( )
(2)两两相交的三条直线最多可以确定三个平面.( )
(3)如果两个平面有三个公共点,则这两个平面重合.( )
(4)若直线a不平行于平面α,且a⊄α,则α内的所有直线与a异面.( )
解析 (1)如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,故错误.
(3)如果两个平面有三个公共点,则这两个平面相交或重合,故错误.
(4)由于a不平行于平面α,且a⊄α,则a与平面α相交,故平面α内有与a相交的直线,故错误.
答案 (1)× (2)√ (3)× (4)×
2.(必修2P52B1(2)改编)如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为( )
A.30° B.45°
C.60° D.90°
解析 连接B1D1,D1C,则B1D1∥EF,故∠D1B1C为所求的角.又B1D1=B1C=D1C,∴∠D1B1C=60°.
答案 C
3.(2018·贵阳调研)α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是( )
A.垂直 B.相交 C.异面 D.平行
解析 依题意,m∩α=A,n⊂α,∴m与n异面、相交(垂直是相交的特例),一定不平行.
答案 D
4.(一题多解)(2017·全国Ⅰ卷)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )
解析 法一 对于选项B,如图(1)所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ.同理可证选项C,D中均有AB∥平面MNQ.因此A项不正确.
图(1) 图(2)
法二 对于选项A,其中O为BC的中点(如图(2)所示),连接OQ,则OQ∥AB,因为OQ与平面MNQ有交点,所以AB与平面MNQ有交点,即AB与平面MNQ不平行.
答案 A
5.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为 .
解析 EF与正方体左、右两侧面均平行.所以与EF相交的侧面有4个.
答案 4
考点一 平面的基本性质及应用
【例1】 (1)(2016·山东卷)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析 由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.
答案 A
(2)如图所示,四边形ABEF和ABCD都是梯形,BC綉AD,BE綉FA,G,H分别为FA,FD的中点.
①证明:四边形BCHG是平行四边形;
②C,D,F,E四点是否共面?为什么?
①证明 由已知FG=GA,FH=HD,可得GH綉AD.又BC綉AD,∴GH綉BC,
∴四边形BCHG为平行四边形.
②解 ∵BE綉AF,G为FA的中点,∴BE綉FG,
∴四边形BEFG为平行四边形,∴EF∥BG.
由(1)知BG綉CH,∴EF∥CH,∴EF与CH共面.
又D∈FH,∴C,D,F,E四点共面.
规律方法 1.证明线共面或点共面的常用方法
(1)直接法,证明直线平行或相交,从而证明线共面.
(2)纳入平面法,先确定一个平面,再证明有关点、线在此平面内.
(3)辅助平面法,先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.
2.证明点共线问题的常用方法
(1)基本性质法,一般转化为证明这些点是某两个平面的公共点,再根据基本性质3证明这些点都在这两个平面的交线上.
(2)纳入直线法,选择其中两点确定一条直线,然后证明其余点也在该直线上.
【训练1】 如图,正方体ABCD-A1B1C1D1中,E,F分别是AB和AA1的中点.求证:
(1)E,C,D1,F四点共面;
(2)CE,D1F,DA三线共点.
证明 (1)如图,连接EF,CD1,A1B.
∵E,F分别是AB,AA1的中点,
∴EF∥A1B.
又A1B∥D1C,∴EF∥CD1,
∴E,C,D1,F四点共面.
(2)∵EF∥CD1,EF
∴CE与D1F必相交,
设交点为P,如图所示.
则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.
同理P∈平面ADD1A1.
又平面ABCD∩平面ADD1A1=DA,
∴P∈直线DA,∴CE,D1F,DA三线共点.
考点二 判断空间两直线的位置关系
【例2】 (1)若m,n为两条不重合的直线,α,β为两个不重合的平面,则下列命题中正确的是( )
①若直线m,n都平行于平面α,则m,n一定不是相交直线;
②若直线m,n都垂直于平面α,则m,n一定是平行直线;
③已知平面α,β互相垂直,且直线m,n也互相垂直,若m⊥α,则n⊥β;
④若直线m,n在平面α内的射影互相垂直,则m⊥n.
A.② B.②③ C.①③ D.②④
(2)(2018·唐山一中月考)如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有 (填上所有正确答案的序号).
解析 (1)对于①,m与n可能平行,可能相交,也可能异面,①错误;
对于②,由线面垂直的性质定理可知,m与n一定平行,故②正确;
对于③,还有可能n∥β或n与β相交,③错误;
对于④,把m,n放入正方体中,如图,取A1B为m,B1C为n,平面ABCD为平面α,则m与n在α内的射影分别为AB与BC,且AB⊥BC.而m与n所成的角为60°,故④错误.
(2)图①中,直线GH∥MN;
图②中,G,H,N三点共面,但M∉平面GHN,N∉GH,因此直线GH与MN异面;
图③中,连接MG,GM∥HN,
因此GH与MN共面;
图④中,G,M,N共面,但H∉平面GMN,G∉MN,
因此GH与MN异面.
所以在图②④中,GH与MN异面.
答案 (1)A (2)②④
规律方法 1.异面直线的判定方法:
(1)反证法:先假设两条直线不是异面直线,即两条直线平行或相交,由假设出发,经过严格的推理,导出矛盾,从而否定假设,肯定两条直线异面.
(2)定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.
2.点、线、面位置关系的判定,要注意几何模型的选取,常借助正方体为模型,以正方体为主线直观感知并认识空间点、线、面的位置关系.
【训练2】 (1)(2018·哈尔滨一模)下列命题正确的是( )
A.若两条直线和同一个平面平行,则这两条直线平行
B.若一直线与两个平面所成的角相等,则这两个平面平行
C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
D.若两个平面垂直于同一个平面,则这两个平面平行
(2)如图,在正方体ABCD-A1B1C1D1中,点E,F分别在A1D,AC上,且A1E=2ED,CF=2FA,则EF与BD1的位置关系是( )
A.相交但不垂直 B.异面
C.相交且垂直 D.平行
解析 (1)A选项,两条直线可能平行,可能异面,也可能相交;B选项,一直线可以与两垂直平面所成的角都是45°;易知C正确;D中的两平面也可能相交.
(2)连接D1E并延长,与AD交于点M,因为A1E=2ED,可得M为AD的中点,
连接BF并延长,交AD于点N,因为CF=2FA,可得N为AD的中点,所以M,N重合,且=,=,所以=,所以EF∥BD1.
答案 (1)C (2)D
考点三 异面直线所成的角
【例3】 (2017·全国Ⅱ卷)已知直三棱柱ABC-A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为( )
A. B. C. D.
解析 将直三棱柱ABC-A1B1C1补形为直四棱柱ABCD-A1B1C1D1,如图所示,连接AD1,B1D1,BD.
由题意知∠ABC=120°,AB=2,BC=CC1=1,
所以AD1=BC1=,AB1=,∠DAB=60°.
在△ABD中,由余弦定理知BD2=22+12-2×2×1×cos 60°=3,所以BD=,所以B1D1=.
又AB1与AD1所成的角即为AB1与BC1所成的角θ,
所以cos θ===.
答案 C
规律方法 1.求异面直线所成的角常用方法是平移法,平移方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.
2.求异面直线所成角的三个步骤
(1)作:通过作平行线,得到相交直线的夹角.
(2)证:证明相交直线夹角为异面直线所成的角.
(3)求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.
【训练3】 (2018·佛山模拟)如图所示,在正三棱柱ABC-A1B1C1中,D是AC的中点,AA1∶AB=∶1,则异面直线AB1与BD所成的角为 .
解析 取A1C1的中点E,连接B1E,ED,AE,易知BD∥B1E.
在Rt△AB1E中,∠AB1E为异面直线AB1与BD所成的角.
设AB=1,则A1A=,AB1=,B1E=,所以cos∠AB1E==,因此∠AB1E=,
故异面直线AB1与BD所成的角为.
答案
基础巩固题组
(建议用时:40分钟)
一、选择题
1.给出下列说法:①梯形的四个顶点共面;②三条平行直线共面;③有三个公共点的两个平面重合;④三条直线两两相交,可以确定1个或3个平面.其中正确的序号是( )
A.① B.①④ C.②③ D.③④
解析 显然命题①正确.
由于三棱柱的三条平行棱不共面,②错.
命题③中,两个平面重合或相交,③错.
三条直线两两相交,可确定1个或3个平面,则命题④正确.
答案 B
2.(2018·九江二模)在如图所示的正四棱柱ABCD-A1B1C1D1中,E,F分别是棱B1B,AD的中点,则直线BF与平面AD1E的位置关系是( )
A.平行 B.相交但不垂直
C.垂直 D.异面
解析 如图,取AD1的中点O,连接OE,OF,则OF平行且等于BE,
∴四边形BFOE是平行四边形,
∴BF∥OE,
∵BF⊄平面AD1E,OE⊂平面AD1E,
∴BF∥平面AD1E.
答案 A
3.(2018·烟台质检)a,b,c是两两不同的三条直线,下面四个命题中,真命题是( )
A.若直线a,b异面,b,c异面,则a,c异面
B.若直线a,b相交,b,c相交,则a,c相交
C.若a∥b,则a,b与c所成的角相等
D.若a⊥b,b⊥c,则a∥c
解析 若直线a,b异面,b,c异面,则a,c相交、平行或异面;若a,b相交,b,c相交,则a,c相交、平行或异面;若a⊥b,b⊥c,则a,c相交、平行或异面;由异面直线所成的角的定义知C正确.
答案 C
4.(2018·临汾调研)已知平面α及直线a,b,则下列说法正确的是( )
A.若直线a,b与平面α所成角都是30°,则这两条直线平行
B.若直线a,b与平面α所成角都是30°,则这两条直线不可能垂直
C.若直线a,b平行,则这两条直线中至少有一条与平面α平行
D.若直线a,b垂直,则这两条直线与平面α不可能都垂直
解析 对于A,若直线a,b与平面α所成角都是30°,则这两条直线平行、相交、异面,故A错误.对于B,若直线a,b与平面α所成角都是30°,则这两条直线可能垂直.如图,直角三角形ACB的直角顶点C在平面α内,边AC,BC可以与平面α都成30°角,故B错误.
C显然错误;
对于D,假设直线a,b与平面α都垂直,则直线a,b平行,与已知矛盾,则假设不成立,D正确.
答案 D
5.如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AA1=2AB=2,则异面直线A1B与AD1所成角的余弦值为( )
A. B.
C. D.
解析 连接BC1,易证BC1∥AD1,
则∠A1BC1即为异面直线A1B与AD1所成的角.
连接A1C1,由AB=1,AA1=2,
则A1C1=,A1B=BC1=,
在△A1BC1中,由余弦定理得
cos∠A1BC1==.
答案 D
二、填空题
6.(2018·邯郸调研)在三棱锥S-ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是 .
解析 如图所示,连接SG1并延长交AB于M,连接SG2并延长交AC于N,连接MN.
由题意知SM为△SAB的中线,且SG1=SM,SN为△SAC的中线,且SG2=SN,
∴在△SMN中,=,∴G1G2∥MN,
易知MN是△ABC的中位线,∴MN∥BC,
因此可得G1G2∥BC.
答案 G1G2∥BC
7.(2018·重庆模拟)如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,则异面直线AP与BD所成的角为 .
解析 如图,将原图补成正方体ABCD-QGHP,连接GP,则GP∥BD,所以∠APG为异面直线AP与BD所成的角,
在△AGP中,AG=GP=AP,
所以∠APG=.
答案
8.(2018·西安模拟)如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.
以上四个命题中,正确命题的序号是 .
解析 还原成正四面体A-DEF,其中H与N重合,A,B,C三点重合.
易知GH与EF异面,BD与MN异面.
又△GMH为等边三角形,
∴GH与MN成60°角,
易证DE⊥AF,MN∥AF,∴MN⊥DE.
因此正确的序号是②③④.
答案 ②③④
三、解答题
9.如图,在正方体ABCD-A1B1C1D1中,O为正方形ABCD的中心,H为直线B1D与平面ACD1的交点.求证:D1,H,O三点共线.
证明 如图,连接BD,B1D1,
则BD∩AC=O,
∵BB1綉DD1,
∴四边形BB1D1D为平行四边形.
又H∈B1D,B1D⊂平面BB1D1D,
则H∈平面BB1D1D,
∵平面ACD1∩平面BB1D1D=OD1,∴H∈OD1.
故D1,H,O三点共线.
10.(2017·昆明月考)如图所示,在三棱锥P-ABC中,PA⊥底面ABC,D是PC的中点.
已知∠BAC=,
AB=2,AC=2,PA=2.求:
(1)三棱锥P-ABC的体积;
(2)异面直线BC与AD所成角的余弦值.
解 (1)S△ABC=×2×2=2,
三棱锥P-ABC的体积为
V=S△ABC·PA=×2×2=.
(2)如图,取PB的中点E,连接DE,AE,则ED∥BC,所以∠ADE是异面直线BC与AD所成的角(或其补角).
在△ADE中,DE=2,AE=,AD=2,
cos∠ADE==.
故异面直线BC与AD所成角的余弦值为.
能力提升题组
(建议用时:20分钟)
11.(2016·全国Ⅰ卷)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为( )
A. B. C. D.
解析 如图所示,设平面CB1D1∩平面ABCD=m1,因为α∥平面CB1D1,所以m1∥m,
又平面ABCD∥平面A1B1C1D1,
且平面B1D1C∩平面A1B1C1D1=B1D1,
所以B1D1∥m1,故B1D1∥m.
因为平面ABB1A1∥平面DCC1D1,
且平面CB1D1∩平面DCC1D1=CD1,
同理可证CD1∥n.
故m,n所成角即直线B1D1与CD1所成角,
在正方体ABCD-A1B1C1D1中,△CB1D1是正三角形,故直线B1D1与CD1所成角为60°,其正弦值为.
答案 A
12.正方体ABCD-A1B1C1D1中,E为线段B1D1上的一个动点,则下列结论中正确的是 (填序号).
①AC⊥BE;
②B1E∥平面ABCD;
③三棱锥E-ABC的体积为定值;
④直线B1E⊥直线BC1.
解析 因AC⊥平面BDD1B1,故①正确;因B1D1∥平面ABCD,故②正确;记正方体的体积为V,则VE-ABC=V,为定值,故③正确;B1E与BC1不垂直,故④错误.
答案 ①②③
13.如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.
(1)求四棱锥O-ABCD的体积;
(2)求异面直线OC与MD所成角的正切值.
解 (1)由已知可求得正方形ABCD的面积S=4,
所以四棱锥O-ABCD的体积V=×4×2=.
(2)如图,连接AC,设线段AC的中点为E,连接ME,DE,又M为OA中点,∴ME∥OC,
则∠EMD(或其补角)为异面直线OC与MD所成的角,由已知可得DE=,EM=,MD=,
∵()2+()2=()2,
∴△DEM为直角三角形,
∴tan∠EMD===.
∴异面直线OC与MD所成角的正切值为.
最新考纲 1.理解空间直线、平面位置关系的定义;2.了解可以作为推理依据的公理和定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.
知 识 梳 理
1.平面的基本性质
(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
(2)公理2:过不在同一条直线上的三点,有且只有一个平面.
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
2.空间点、直线、平面之间的位置关系
直线与直线
直线与平面
平面与平面
平行关系
图形
语言
符号
语言
a∥b
a∥α
α∥β
相交关系
图形
语言
符号
语言
a∩b=A
a∩α=A
α∩β=l
独有关系
图形
语言
符号
语言
a,b是异面直线
a⊂α
3.平行公理(公理4)和等角定理
平行公理:平行于同一条直线的两条直线互相平行.
等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
4.异面直线所成的角
(1)定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).
(2)范围:.
[常用结论与微点提醒]
1.空间中两个角的两边分别对应平行,则两个角相等或互补.
2.异面直线的判定:经过平面内一点的直线与平面内不经过该点的直线互为异面直线.
3.唯一性的几个结论:
(1)过直线外一点有且只有一个平面与已知直线垂直.
(2)过平面外一点有且只有一个平面与已知平面平行.
(3)过平面外一点有且只有一条直线与已知平面垂直.
诊 断 自 测
1.思考辨析(在括号内打“√”或“×”)
(1)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( )
(2)两两相交的三条直线最多可以确定三个平面.( )
(3)如果两个平面有三个公共点,则这两个平面重合.( )
(4)若直线a不平行于平面α,且a⊄α,则α内的所有直线与a异面.( )
解析 (1)如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,故错误.
(3)如果两个平面有三个公共点,则这两个平面相交或重合,故错误.
(4)由于a不平行于平面α,且a⊄α,则a与平面α相交,故平面α内有与a相交的直线,故错误.
答案 (1)× (2)√ (3)× (4)×
2.(必修2P52B1(2)改编)如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为( )
A.30° B.45°
C.60° D.90°
解析 连接B1D1,D1C,则B1D1∥EF,故∠D1B1C为所求的角.又B1D1=B1C=D1C,∴∠D1B1C=60°.
答案 C
3.(2018·贵阳调研)α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是( )
A.垂直 B.相交 C.异面 D.平行
解析 依题意,m∩α=A,n⊂α,∴m与n异面、相交(垂直是相交的特例),一定不平行.
答案 D
4.(一题多解)(2017·全国Ⅰ卷)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )
解析 法一 对于选项B,如图(1)所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ.同理可证选项C,D中均有AB∥平面MNQ.因此A项不正确.
图(1) 图(2)
法二 对于选项A,其中O为BC的中点(如图(2)所示),连接OQ,则OQ∥AB,因为OQ与平面MNQ有交点,所以AB与平面MNQ有交点,即AB与平面MNQ不平行.
答案 A
5.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为 .
解析 EF与正方体左、右两侧面均平行.所以与EF相交的侧面有4个.
答案 4
考点一 平面的基本性质及应用
【例1】 (1)(2016·山东卷)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析 由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.
答案 A
(2)如图所示,四边形ABEF和ABCD都是梯形,BC綉AD,BE綉FA,G,H分别为FA,FD的中点.
①证明:四边形BCHG是平行四边形;
②C,D,F,E四点是否共面?为什么?
①证明 由已知FG=GA,FH=HD,可得GH綉AD.又BC綉AD,∴GH綉BC,
∴四边形BCHG为平行四边形.
②解 ∵BE綉AF,G为FA的中点,∴BE綉FG,
∴四边形BEFG为平行四边形,∴EF∥BG.
由(1)知BG綉CH,∴EF∥CH,∴EF与CH共面.
又D∈FH,∴C,D,F,E四点共面.
规律方法 1.证明线共面或点共面的常用方法
(1)直接法,证明直线平行或相交,从而证明线共面.
(2)纳入平面法,先确定一个平面,再证明有关点、线在此平面内.
(3)辅助平面法,先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.
2.证明点共线问题的常用方法
(1)基本性质法,一般转化为证明这些点是某两个平面的公共点,再根据基本性质3证明这些点都在这两个平面的交线上.
(2)纳入直线法,选择其中两点确定一条直线,然后证明其余点也在该直线上.
【训练1】 如图,正方体ABCD-A1B1C1D1中,E,F分别是AB和AA1的中点.求证:
(1)E,C,D1,F四点共面;
(2)CE,D1F,DA三线共点.
证明 (1)如图,连接EF,CD1,A1B.
∵E,F分别是AB,AA1的中点,
∴EF∥A1B.
又A1B∥D1C,∴EF∥CD1,
∴E,C,D1,F四点共面.
(2)∵EF∥CD1,EF
设交点为P,如图所示.
则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.
同理P∈平面ADD1A1.
又平面ABCD∩平面ADD1A1=DA,
∴P∈直线DA,∴CE,D1F,DA三线共点.
考点二 判断空间两直线的位置关系
【例2】 (1)若m,n为两条不重合的直线,α,β为两个不重合的平面,则下列命题中正确的是( )
①若直线m,n都平行于平面α,则m,n一定不是相交直线;
②若直线m,n都垂直于平面α,则m,n一定是平行直线;
③已知平面α,β互相垂直,且直线m,n也互相垂直,若m⊥α,则n⊥β;
④若直线m,n在平面α内的射影互相垂直,则m⊥n.
A.② B.②③ C.①③ D.②④
(2)(2018·唐山一中月考)如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有 (填上所有正确答案的序号).
解析 (1)对于①,m与n可能平行,可能相交,也可能异面,①错误;
对于②,由线面垂直的性质定理可知,m与n一定平行,故②正确;
对于③,还有可能n∥β或n与β相交,③错误;
对于④,把m,n放入正方体中,如图,取A1B为m,B1C为n,平面ABCD为平面α,则m与n在α内的射影分别为AB与BC,且AB⊥BC.而m与n所成的角为60°,故④错误.
(2)图①中,直线GH∥MN;
图②中,G,H,N三点共面,但M∉平面GHN,N∉GH,因此直线GH与MN异面;
图③中,连接MG,GM∥HN,
因此GH与MN共面;
图④中,G,M,N共面,但H∉平面GMN,G∉MN,
因此GH与MN异面.
所以在图②④中,GH与MN异面.
答案 (1)A (2)②④
规律方法 1.异面直线的判定方法:
(1)反证法:先假设两条直线不是异面直线,即两条直线平行或相交,由假设出发,经过严格的推理,导出矛盾,从而否定假设,肯定两条直线异面.
(2)定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.
2.点、线、面位置关系的判定,要注意几何模型的选取,常借助正方体为模型,以正方体为主线直观感知并认识空间点、线、面的位置关系.
【训练2】 (1)(2018·哈尔滨一模)下列命题正确的是( )
A.若两条直线和同一个平面平行,则这两条直线平行
B.若一直线与两个平面所成的角相等,则这两个平面平行
C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
D.若两个平面垂直于同一个平面,则这两个平面平行
(2)如图,在正方体ABCD-A1B1C1D1中,点E,F分别在A1D,AC上,且A1E=2ED,CF=2FA,则EF与BD1的位置关系是( )
A.相交但不垂直 B.异面
C.相交且垂直 D.平行
解析 (1)A选项,两条直线可能平行,可能异面,也可能相交;B选项,一直线可以与两垂直平面所成的角都是45°;易知C正确;D中的两平面也可能相交.
(2)连接D1E并延长,与AD交于点M,因为A1E=2ED,可得M为AD的中点,
连接BF并延长,交AD于点N,因为CF=2FA,可得N为AD的中点,所以M,N重合,且=,=,所以=,所以EF∥BD1.
答案 (1)C (2)D
考点三 异面直线所成的角
【例3】 (2017·全国Ⅱ卷)已知直三棱柱ABC-A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为( )
A. B. C. D.
解析 将直三棱柱ABC-A1B1C1补形为直四棱柱ABCD-A1B1C1D1,如图所示,连接AD1,B1D1,BD.
由题意知∠ABC=120°,AB=2,BC=CC1=1,
所以AD1=BC1=,AB1=,∠DAB=60°.
在△ABD中,由余弦定理知BD2=22+12-2×2×1×cos 60°=3,所以BD=,所以B1D1=.
又AB1与AD1所成的角即为AB1与BC1所成的角θ,
所以cos θ===.
答案 C
规律方法 1.求异面直线所成的角常用方法是平移法,平移方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.
2.求异面直线所成角的三个步骤
(1)作:通过作平行线,得到相交直线的夹角.
(2)证:证明相交直线夹角为异面直线所成的角.
(3)求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.
【训练3】 (2018·佛山模拟)如图所示,在正三棱柱ABC-A1B1C1中,D是AC的中点,AA1∶AB=∶1,则异面直线AB1与BD所成的角为 .
解析 取A1C1的中点E,连接B1E,ED,AE,易知BD∥B1E.
在Rt△AB1E中,∠AB1E为异面直线AB1与BD所成的角.
设AB=1,则A1A=,AB1=,B1E=,所以cos∠AB1E==,因此∠AB1E=,
故异面直线AB1与BD所成的角为.
答案
基础巩固题组
(建议用时:40分钟)
一、选择题
1.给出下列说法:①梯形的四个顶点共面;②三条平行直线共面;③有三个公共点的两个平面重合;④三条直线两两相交,可以确定1个或3个平面.其中正确的序号是( )
A.① B.①④ C.②③ D.③④
解析 显然命题①正确.
由于三棱柱的三条平行棱不共面,②错.
命题③中,两个平面重合或相交,③错.
三条直线两两相交,可确定1个或3个平面,则命题④正确.
答案 B
2.(2018·九江二模)在如图所示的正四棱柱ABCD-A1B1C1D1中,E,F分别是棱B1B,AD的中点,则直线BF与平面AD1E的位置关系是( )
A.平行 B.相交但不垂直
C.垂直 D.异面
解析 如图,取AD1的中点O,连接OE,OF,则OF平行且等于BE,
∴四边形BFOE是平行四边形,
∴BF∥OE,
∵BF⊄平面AD1E,OE⊂平面AD1E,
∴BF∥平面AD1E.
答案 A
3.(2018·烟台质检)a,b,c是两两不同的三条直线,下面四个命题中,真命题是( )
A.若直线a,b异面,b,c异面,则a,c异面
B.若直线a,b相交,b,c相交,则a,c相交
C.若a∥b,则a,b与c所成的角相等
D.若a⊥b,b⊥c,则a∥c
解析 若直线a,b异面,b,c异面,则a,c相交、平行或异面;若a,b相交,b,c相交,则a,c相交、平行或异面;若a⊥b,b⊥c,则a,c相交、平行或异面;由异面直线所成的角的定义知C正确.
答案 C
4.(2018·临汾调研)已知平面α及直线a,b,则下列说法正确的是( )
A.若直线a,b与平面α所成角都是30°,则这两条直线平行
B.若直线a,b与平面α所成角都是30°,则这两条直线不可能垂直
C.若直线a,b平行,则这两条直线中至少有一条与平面α平行
D.若直线a,b垂直,则这两条直线与平面α不可能都垂直
解析 对于A,若直线a,b与平面α所成角都是30°,则这两条直线平行、相交、异面,故A错误.对于B,若直线a,b与平面α所成角都是30°,则这两条直线可能垂直.如图,直角三角形ACB的直角顶点C在平面α内,边AC,BC可以与平面α都成30°角,故B错误.
C显然错误;
对于D,假设直线a,b与平面α都垂直,则直线a,b平行,与已知矛盾,则假设不成立,D正确.
答案 D
5.如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AA1=2AB=2,则异面直线A1B与AD1所成角的余弦值为( )
A. B.
C. D.
解析 连接BC1,易证BC1∥AD1,
则∠A1BC1即为异面直线A1B与AD1所成的角.
连接A1C1,由AB=1,AA1=2,
则A1C1=,A1B=BC1=,
在△A1BC1中,由余弦定理得
cos∠A1BC1==.
答案 D
二、填空题
6.(2018·邯郸调研)在三棱锥S-ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是 .
解析 如图所示,连接SG1并延长交AB于M,连接SG2并延长交AC于N,连接MN.
由题意知SM为△SAB的中线,且SG1=SM,SN为△SAC的中线,且SG2=SN,
∴在△SMN中,=,∴G1G2∥MN,
易知MN是△ABC的中位线,∴MN∥BC,
因此可得G1G2∥BC.
答案 G1G2∥BC
7.(2018·重庆模拟)如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,则异面直线AP与BD所成的角为 .
解析 如图,将原图补成正方体ABCD-QGHP,连接GP,则GP∥BD,所以∠APG为异面直线AP与BD所成的角,
在△AGP中,AG=GP=AP,
所以∠APG=.
答案
8.(2018·西安模拟)如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.
以上四个命题中,正确命题的序号是 .
解析 还原成正四面体A-DEF,其中H与N重合,A,B,C三点重合.
易知GH与EF异面,BD与MN异面.
又△GMH为等边三角形,
∴GH与MN成60°角,
易证DE⊥AF,MN∥AF,∴MN⊥DE.
因此正确的序号是②③④.
答案 ②③④
三、解答题
9.如图,在正方体ABCD-A1B1C1D1中,O为正方形ABCD的中心,H为直线B1D与平面ACD1的交点.求证:D1,H,O三点共线.
证明 如图,连接BD,B1D1,
则BD∩AC=O,
∵BB1綉DD1,
∴四边形BB1D1D为平行四边形.
又H∈B1D,B1D⊂平面BB1D1D,
则H∈平面BB1D1D,
∵平面ACD1∩平面BB1D1D=OD1,∴H∈OD1.
故D1,H,O三点共线.
10.(2017·昆明月考)如图所示,在三棱锥P-ABC中,PA⊥底面ABC,D是PC的中点.
已知∠BAC=,
AB=2,AC=2,PA=2.求:
(1)三棱锥P-ABC的体积;
(2)异面直线BC与AD所成角的余弦值.
解 (1)S△ABC=×2×2=2,
三棱锥P-ABC的体积为
V=S△ABC·PA=×2×2=.
(2)如图,取PB的中点E,连接DE,AE,则ED∥BC,所以∠ADE是异面直线BC与AD所成的角(或其补角).
在△ADE中,DE=2,AE=,AD=2,
cos∠ADE==.
故异面直线BC与AD所成角的余弦值为.
能力提升题组
(建议用时:20分钟)
11.(2016·全国Ⅰ卷)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为( )
A. B. C. D.
解析 如图所示,设平面CB1D1∩平面ABCD=m1,因为α∥平面CB1D1,所以m1∥m,
又平面ABCD∥平面A1B1C1D1,
且平面B1D1C∩平面A1B1C1D1=B1D1,
所以B1D1∥m1,故B1D1∥m.
因为平面ABB1A1∥平面DCC1D1,
且平面CB1D1∩平面DCC1D1=CD1,
同理可证CD1∥n.
故m,n所成角即直线B1D1与CD1所成角,
在正方体ABCD-A1B1C1D1中,△CB1D1是正三角形,故直线B1D1与CD1所成角为60°,其正弦值为.
答案 A
12.正方体ABCD-A1B1C1D1中,E为线段B1D1上的一个动点,则下列结论中正确的是 (填序号).
①AC⊥BE;
②B1E∥平面ABCD;
③三棱锥E-ABC的体积为定值;
④直线B1E⊥直线BC1.
解析 因AC⊥平面BDD1B1,故①正确;因B1D1∥平面ABCD,故②正确;记正方体的体积为V,则VE-ABC=V,为定值,故③正确;B1E与BC1不垂直,故④错误.
答案 ①②③
13.如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.
(1)求四棱锥O-ABCD的体积;
(2)求异面直线OC与MD所成角的正切值.
解 (1)由已知可求得正方形ABCD的面积S=4,
所以四棱锥O-ABCD的体积V=×4×2=.
(2)如图,连接AC,设线段AC的中点为E,连接ME,DE,又M为OA中点,∴ME∥OC,
则∠EMD(或其补角)为异面直线OC与MD所成的角,由已知可得DE=,EM=,MD=,
∵()2+()2=()2,
∴△DEM为直角三角形,
∴tan∠EMD===.
∴异面直线OC与MD所成角的正切值为.
相关资料
更多