江苏省苏州市某中学2020届高三第三次模拟考试数学试卷
展开
数学
一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.
1.已知集合,则 .
2.已知复数,其中为虚数单位,则复数的模是 .
3.抛物线的准线方程为 .
4.某市为了响应江苏省“农村人居环境整治的新实践”,调研农村环境整治情况,按地域将下辖的250个行政村分成四组,对应的行政村个数分别为,若用分层抽样抽取50个行政村,则B组中应该抽取的行政村数为 .
5.执行如图所示的程序框图,输出的S的值为 .
6.中国古典乐器一般按“八音”分类,如图,在《周礼·春官·大师》中按乐器的制造材料对乐器分类,分别为“金、石、木、土、革、丝、匏、竹” 八音,其中“土、匏、竹”为吹奏乐器,“金、石、木、革”为打击乐器,“丝”为弹拨乐器.现从“八音”中任取不同的“一音”,则不是吹奏乐器的概率为 .
7.已知函数若,则实数的值是 .
8.已知和均为等差数列,若,,则的值是 .
9.已知为函数的两个极值点,则的最小值为 .
10.在长方体中,,若在长方体中挖去一个体积最大的圆柱,则此圆柱与原长方体的体积比为 .
11.在平面直角坐标系中,已知圆,若对于直线
上的任意一点P,在圆C上总存在Q使,则实数的取值范围为 .
12.如图,在平行四边形ABCD中,,E为BC的中点,若线段DE上存在一点M满足,则的值是 .
13.在中,设角对应的边分别为,记的面积为S,若,则的最大值为 .
14.已知函数,其图象记为曲线,曲线上存在异于原点的点,使得曲线与其在的切线交于另一点,曲线与其在的切线交于另一点,若直线与直线的斜率之积小于,则的取值范围为 .
二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
15.(本小题满分14分)
已知平面向量,.
(1)若,求的值;
(2)若,求的值.
16.(本小题满分14分)
如图,在三棱锥中,平面.已知,分别为的中点.
(1)求证:平面;
(2)若点在线段AC上,且,
求证:∥平面.
17.(本小题满分14分)
在平面直角坐标系中,已知椭圆的左右焦点分别为 和,离心率为,左准线方程为.
(1)求椭圆的方程;
(2)设不经过的直线与椭圆相交于两点,直线的斜率分别为,且,求k的取值范围.
18.(本小题满分16分)
如图,在一个圆心角为,半径为10米的扇形草地上,需铺设一个直角三角形的花地,其中为直角,要求三点分别落在线段和弧上,且,的面积为.
(1)当且时,求的值;
(2)无论如何铺设,要求始终不小于20平方米,求的取值范围.
19.(本小题满分16分)
已知在每一项均不为0的数列中,,且(为常数,),记数列的前项和为.
(1)当时,求;
(2)当时,
①求证:数列为等比数列;
②是否存在正整数,使得不等式对任意恒成立?若存在,求出的最小值;若不存在,请说明理由.
20.(本小题满分16分)
定义:函数的导函数为,函数的导函数为,我们称函数称为函数的二阶导函数.已知,.
(1)求函数的二阶导函数;
(2)已知定义在R上的函数满足:对任意,恒成立.P为曲线上的任意一点.求证:除点P外,曲线上每一点都在点P处切线的上方;
(3)试给出一个实数a的值,使得曲线与曲线有且仅有一条公切线,并证明你的结论.
21.【选做题】本题包括、、三小题,请选定其中两题,并在相应的答题区域内作答,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
.选修4 2:矩阵与变换(本小题满分10分)
求曲线在矩阵对应变换作用下得到的曲线的方程.
.选修4 4:坐标系与参数方程(本小题满分10分)
在极坐标系中,已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合.若曲线的方程为,曲线的方程为.
(1)将和的方程化为直角坐标方程;
(2)若和分别为和上的动点,求的最小值.
.选修4 5:不等式选讲(本小题满分10分)
已知均为正实数,且有,求证:.
【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
22.(本小题满分10分)
在平面直角坐标系xOy中,已知抛物线在点处切线的斜率为,抛物线的准线与对称轴交于T,直线PT与抛物线交于另一点Q.
(1)求抛物线的方程;
(2)设M为抛物线C上一点,且M在P与Q之间运动,求面积的最大值.
23.(本小题满分10分)
集合,
记集合的元素个数为.
(1)求;
(2)求证:能被3整除.
参考答案
一、填空题:本大题共14小题,每小题5分,共计70分.
1. 2. 3. 4.15 5.34
6. 7.4 8.12 9. 10.
11. 12. 13. 14.
解答与提示:
1.根据交集定义可知,.
2.由可知,.
3..
4.由题意,所以.
5.执行第一次循环;执行第二次循环;执行第三次循环,终止循环.所以.
6.由枚举法知从音中任取不同1音共有8种不同的取法,不含吹奏乐器的有5种,由古典概型得.
7.时,因为,所以无解.从而要使,只能,解得.
8.因为成等差数列,所以,所以,得.
9.,所以,所以的最小值为.
10.分别以三种面上最大圆为圆柱的底面的圆柱体积为,所以最大体积为,所以此圆柱与原长方体的体积比为.
11.由题意过P总可以作圆C的切线,所以圆C与直线相离,所以,解得.
12.因为,
所以所以.
13.法一:由角化边得,所以,
,
故.
令,则,
,所以.
法二:不妨设,则,
以为轴,中点为坐标原点建立平面直角坐标系,则.
设,由可得,
而(是顶点到底边的高),
所以,所以.
法三:在中,过点C作,垂足为H.
由,得.设,则.
(当且仅当时取“”).
14.,设,
则,即,
联立得,同理,
则,,
又,所以由,得,
令,则在上有解,由得.
二、解答题:本大题共6小题,共计90分.
15.(本小题满分14分)
解:(1)因为,,且,
所以.·····················································3分
所以,即.··················································5分
(2)因为,,且,
所以,即.··················································8分
若,则,不满足上式,舍去.····································10分
所以,所以,················································12分
所以.·····················································14分
16.(本小题满分14分)
解:(1)因为平面,平面,所以.····································2分
因为,是的中点,所以.········································4分
又因为,平面,所以平面.·······································6分
(2)连结,交于点,连结.如图.
因为分别是的中点,
所以为的中位线,·····························8分
从而,可得,································10分
因为,所以,所以.···························12分
又因为平面,平面,所以∥平面.··································14分
17.(本小题满分14分)
解:(1)由可知,又左准线方程为,即,
联立解得,,椭圆方程为.·······································4分
(2)①由(1)可知,.
设直线,
联立消得,··················································6分
由韦达定理可知,
因为点和点不重合,且直线的斜率存在,
所以,得.··················································8分
因为,,由条件,
可得,即,
化简得.···················································10分
若,则直线过点,不符合条件,
因此,故,得,··············································12分
代入可知,得,
所以.·····················································14分
18.(本小题满分16分)
解:(1)以为原点,所在直线分别为轴建立平面直角坐标系.
因为且,所以点在直线上.
又因为点在圆上,所以.········································3分
此时,
所以当且时,S的值为20平方米.··································6分
(2)法一:过作,垂足为,作,垂足为,
所以,并且相似比为,所以,·····································8分
又因为点在圆上,代入计算得.··································10分
设,则,
所以,·····················································12分
当R与M重合时,,此时取得最小值,
所以,·····················································14分
要使S始终不小于20平方米,
则,解得,所以的取值范围为.
答:要使S始终不小于20平方米,的取值范围为.······················16分
法二:过作,垂足为,作,垂足为,
所以,并且相似比为,所以,·····································8分
又因为点在圆上,代入计算得.··································10分
设由逆时针转过的角的大小为,
当与重合时设,当与重合时设,
则,此时,所以, ············································12分
所以,·····················································14分
所以,
解得,所以的取值范围是.
答:要使S始终不小于20平方米,的取值范围为.······················16分
法三:以为原点,所在直线分别为轴建立平面直角坐标系.
设Q点坐标为,
①当QP斜率不存在时,,,,又因为点在圆 上,代入计算得.·············8分
②当QP斜率存在时,设斜率为k,则直线PQ的方程为,
令, ,所以P点坐标为.
直线QR的方程为,
令,,所以R点坐标为.
因为,所以,
所以,
整理得,所以,又因为都为正数,
所以,·····················································10分
点在圆上,代入计算得
,又,
所以,·····················································12分
,所以,所以.
由①②得,·················································14分
所以,
解得,所以的取值范围是.
答:要使S始终不小于20平方米,的取值范围为.······················16分
法四:设,,其中,,点到AC边的距离为,到BC边的距离为.
则,·······················································8分
,
所以.·····················································10分
以下同法三.
19.(本小题满分16分)
解:(1)当时,,因为,所以,
所以数列是以3为首项、为公比的等比数列.··························2分
当时,;当时,.
综上所述,··················································4分
(2)①当时,,
所以,.
若存在,使得,则,与矛盾.
所以,所以,················································5分
所以.·····················································7分
又因为,所以,
所以数列是以为首项、2为公比的等比数列.··························8分
②由①可知,所以,
所以.·····················································10分
由,得,,
所以当时,,················································13分
所以(当且仅当时取“”),所以,·······························15分
又因为,且,所以的最小值为2.··································16分
20.(本小题满分16分)
解:(1),.···················································3分
(2)设,则曲线在点P处的切线方程为.
设,则,.
所以在上递增.又,
所以当时,;当时,.
所以在递减,在递增.
所以,.所以.
所以除点P外,曲线上每一点都在点P处切线的上方.····················8分
(3)给出,此时.
因为,所以.
又,所以曲线在x=0处的切线为.
因为,所以.
又,所以曲线在x=0处的切线为.
从而两曲线有一条公切线.······································10分
下面证明它们只有这一条公切线.
①先证明,,当且仅当时取“”.
设,则,
所以,当且仅当时取“”.
所以在上递增.又,
所以当时,;当时,.
所以在递减,在递增.
所以,,当且仅当时取“”.
所以,,当且仅当时取“”.····································13分
②再证明它们没有其它公切线.
若它们还有一条公切线,它与曲线切于点,与曲线切于点,显然,,.
因为,由(2)知,,当且仅当时取“”.
因为,所以.
又由①知,矛盾.故它们只有这一条公切线.
综上,当时,曲线与曲线有且仅有一条公切线.·······················16分
数学Ⅱ(附加题)
参考答案
21.【选做题】本题包括、、三小题,请选定其中两题,若多做,则按作答的前两题评分.
.选修4 2:矩阵与变换(本小题满分10分)
解:设曲线上任一点对应曲线上的点,
则,得所以··················································4分
带入的方程,得,即.
所以曲线的方程为.···········································10分
.选修4 4:坐标系与参数方程(本小题满分10分)
解:(1)设为上任一点,则有,,····································2分
所以由得,即,···············································4分
,消得.····················································6分
(2)圆心到直线的距离,
所以的最小值为.············································10分
.选修4 5:不等式选讲(本小题满分10分)
证:因为,,,··················································2分
所以,·····················································4分
,
当且仅当时取等号,所以.······································10分
【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
22.(本小题满分10分)
解:(1)由得,,
所以当时,,得,
所以抛物线的方程为.··········································3分
(2)由抛物线的准线可知,
直线的方程为,···············································5分
代入得,设,由条件可知,
当面积取最大值时,抛物线在M处的切线平行于直线PT,
则,,所以,M到直线PT的距离为,
又,所以.·················································10分
23.(本小题满分10分)
解:(1),得;,得;
,得;,得.
所以.·····················································3分
(2)由题意, 集合中的各位数字之和为,对于中的每个数,各位数字之和为,若的首位为1,则其余各位数字之和为,总个数为;若的首位为2,则其余各位数字之和为,总个数为,所以. 6分
下面用数学归纳法证明能被3整除.
1.当时,能被3整除;
2.假设时,能被3整除;
则当时,,
因为能被3整除,所以也能被3整除,
所以当时,结论成立
综上可知,能被3整除.········································10分