2020届河南省高三质量测评(一)数学(理)试题(解析版)
展开2020届河南省高三质量测评(一)数学(理)试题
一、单选题
1.已知集合,,则( )
A. B. C. D.
【答案】C
【解析】解一元二次不等式求得集合A,再根据交集运算即可得解.
【详解】
集合,由,可得,所以,
,
所以.
故选;C.
【点睛】
本题考查了一元二次不等式的解法,集合交集的简单运算,属于基础题.
2.若复数满足,则(其中为虚数单位)的最大值为( )
A.1 B.2 C.3 D.4
【答案】B
【解析】根据复数的几何意义可知复数对应的点在以原点为圆心,1为半径的圆上,再根据复数的几何意义即可确定,即可得的最大值.
【详解】
由知,复数对应的点在以原点为圆心,1为半径的圆上,
表示复数对应的点与点间的距离,
又复数对应的点所在圆的圆心到的距离为1,
所以.
故选:B
【点睛】
本题考查了复数模的定义及其几何意义应用,属于基础题.
3.( )
A. B. C. D.
【答案】D
【解析】根据诱导公式及正弦和角公式,展开即可得解.
【详解】
根据诱导公式及正弦和角公式化简可得
故选:D
【点睛】
本题考查了三角函数诱导公式的简单应用,正弦和角公式的简单应用,属于基础题.
4.我们熟悉的卡通形象“哆啦A梦”的长宽比为.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是( )
A.400米 B.480米
C.520米 D.600米
【答案】B
【解析】根据题意,画出几何关系,结合各线段比例可先求得第一展望台和第二展望台的距离,进而由比例即可求得该塔的实际高度.
【详解】
设第一展望台到塔底的高度为米,塔的实际高度为米,几何关系如下图所示:
由题意可得,解得;
且满足,
故解得塔高米,即塔高约为480米.
故选:B
【点睛】
本题考查了对中国文化的理解与简单应用,属于基础题.
5.执行如图所示的程序框图,若输入,,则输出的值为( )
A.0 B.1 C. D.
【答案】A
【解析】根据输入的值大小关系,代入程序框图即可求解.
【详解】
输入,,
因为,所以由程序框图知,
输出的值为.
故选:A
【点睛】
本题考查了对数式大小比较,条件程序框图的简单应用,属于基础题.
6.椭圆是日常生活中常见的图形,在圆柱形的玻璃杯中盛半杯水,将杯体倾斜一个角度,水面的边界即是椭圆.现有一高度为12厘米,底面半径为3厘米的圆柱形玻璃杯,且杯中所盛水的体积恰为该玻璃杯容积的一半(玻璃厚度忽略不计),在玻璃杯倾斜的过程中(杯中的水不能溢出),杯中水面边界所形成的椭圆的离心率的取值范围是( )
A. B. C. D.
【答案】C
【解析】根据题意可知当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大,由椭圆的几何性质即可确定此时椭圆的离心率,进而确定离心率的取值范围.
【详解】
当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大.
此时椭圆长轴长为,短轴长为6,
所以椭圆离心率,
所以.
故选:C
【点睛】
本题考查了橢圆的定义及其性质的简单应用,属于基础题.
7.函数的图象的大致形状是( )
A. B. C. D.
【答案】B
【解析】根据函数奇偶性,可排除D;求得及,由导函数符号可判断在上单调递增,即可排除AC选项.
【详解】
函数
易知为奇函数,故排除D.
又,易知当时,;
又当时,,
故在上单调递增,所以,
综上,时,,即单调递增.
又为奇函数,所以在上单调递增,故排除A,C.
故选:B
【点睛】
本题考查了根据函数解析式判断函数图象,导函数性质与函数图象关系,属于中档题.
8.已知某几何体的三视图如图所示,则该几何体的体积是( )
A. B.64 C. D.32
【答案】A
【解析】根据三视图,还原空间几何体,即可得该几何体的体积.
【详解】
由该几何体的三视图,还原空间几何体如下图所示:
可知该几何体是底面在左侧的四棱锥,其底面是边长为4的正方形,高为4,
故.
故选:A
【点睛】
本题考查了三视图的简单应用,由三视图还原空间几何体,棱锥体积的求法,属于基础题.
9.已知非零向量,满足,,则与的夹角为( )
A. B. C. D.
【答案】B
【解析】由平面向量垂直的数量积关系化简,即可由平面向量数量积定义求得与的夹角.
【详解】
根据平面向量数量积的垂直关系可得,
,
所以,即,
由平面向量数量积定义可得,
所以,而,
即与的夹角为.
故选:B
【点睛】
本题考查了平面向量数量积的运算,平面向量夹角的求法,属于基础题.
10.设函数(,)是上的奇函数,若的图象关于直线对称,且在区间上是单调函数,则( )
A. B. C. D.
【答案】D
【解析】根据函数为上的奇函数可得,由函数的对称轴及单调性即可确定的值,进而确定函数的解析式,即可求得的值.
【详解】
函数(,)是上的奇函数,
则,所以.
又的图象关于直线对称可得,,即,,
由函数的单调区间知,,
即,
综上,则,
.
故选:D
【点睛】
本题考查了三角函数的图象与性质的综合应用,由对称轴、奇偶性及单调性确定参数,属于中档题.
11.对于函数,定义满足的实数为的不动点,设,其中且,若有且仅有一个不动点,则的取值范围是( )
A.或 B.
C.或 D.
【答案】C
【解析】根据不动点的定义,利用换底公式分离参数可得;构造函数,并讨论的单调性与最值,画出函数图象,即可确定的取值范围.
【详解】
由得,.
令,
则,
令,解得,
所以当时,,则在内单调递增;
当时,,则在内单调递减;
所以在处取得极大值,即最大值为,
则的图象如下图所示:
由有且仅有一个不动点,可得得或,
解得或.
故选:C
【点睛】
本题考查了函数新定义的应用,由导数确定函数的单调性与最值,分离参数法与构造函数方法的应用,属于中档题.
12.已知双曲线(,)的左、右顶点分别为,,虚轴的两个端点分别为,,若四边形的内切圆面积为,则双曲线焦距的最小值为( )
A.8 B.16 C. D.
【答案】D
【解析】根据题意画出几何关系,由四边形的内切圆面积求得半径,结合四边形面积关系求得与等量关系,再根据基本不等式求得的取值范围,即可确定双曲线焦距的最小值.
【详解】
根据题意,画出几何关系如下图所示:
设四边形的内切圆半径为,双曲线半焦距为,
则
所以,
四边形的内切圆面积为,
则,解得,
则,
即
故由基本不等式可得,即,
当且仅当时等号成立.
故焦距的最小值为.
故选:D
【点睛】
本题考查了双曲线的定义及其性质的简单应用,圆锥曲线与基本不等式综合应用,属于中档题.
二、填空题
13.的展开式中,的系数为_______(用数字作答).
【答案】60
【解析】根据二项式定理展开式通项,即可求得的系数.
【详解】
因为,
所以,
则所求项的系数为.
故答案为:60
【点睛】
本题考查了二项展开式通项公式的应用,指定项系数的求法,属于基础题.
14.已知实数,满足则的取值范围是______.
【答案】
【解析】根据约束条件画出可行域,即可由直线的平移方法求得的取值范围.
【详解】
.
由题意,画出约束条件表示的平面区域如下图所示,
令,则
如图所示,图中直线所示的两个位置为的临界位置,
根据几何关系可得与轴的两个交点分别为,
所以的取值范围为.
故答案为:
【点睛】
本题考查了非线性约束条件下线性规划的简单应用,由数形结合法求线性目标函数的取值范围,属于中档题.
15.某次足球比赛中,,,,四支球队进入了半决赛.半决赛中,对阵,对阵,获胜的两队进入决赛争夺冠军,失利的两队争夺季军.已知他们之间相互获胜的概率如下表所示.
| ||||
获胜概率 | — | 0.4 | 0.3 | 0.8 |
获胜概率 | 0.6 | — | 0.7 | 0.5 |
获胜概率 | 0.7 | 0.3 | — | 0.3 |
获胜概率 | 0.2 | 0.5 | 0.7 | — |
则队获得冠军的概率为______.
【答案】0.18
【解析】根据表中信息,可得胜C的概率;分类讨论B或D进入决赛,再计算A胜B或A胜C的概率即可求解.
【详解】
由表中信息可知,胜C的概率为;
若B进入决赛,B胜D的概率为,则A胜B的概率为;
若D进入决赛,D胜B的概率为,则A胜D的概率为;
由相应的概率公式知,则A获得冠军的概率为.
故答案为:0.18
【点睛】
本题考查了独立事件的概率应用,互斥事件的概率求法,属于基础题.
三、双空题
16.在棱长为8的正方体空盒内,有四个半径为的小球在盒底四角,分别与正方体底面处交于某一顶点的三个面相切,另有一个半径为的大球放在四个小球之上,与四个小球相切,并与正方体盒盖相切,无论怎样翻转盒子,五球相切不松动,则小球半径的最大值为_______;大球半径的最小值为______.
【答案】2
【解析】因为翻转盒子五球相切不松动,可知底面四个小球均相切,则可得的最大值;根据对称性可知大球球心与四个小球球心,,,构成一个正四棱锥,结合几何关系即可确定大球半径的最小值.
【详解】
当正方体盒内四个小球中相邻小球均相切时,小球半径最大,大球半径最小.
由正方体的棱长为8,可得的最大值为2,下面分析时的取值.
由对称性知,大球球心与四个小球球心,,,构成一个正四棱锥,如下图所示:
则,.
又由正方体盒知,正四棱锥的高(其中为正四棱锥底面正方形中心)长为,
故在直角三角形中,,
即,
解得,
即大球半径的最小值为.
故答案为:2,
【点睛】
本题考查了正方体中与球相关的切接问题,空间几何体的结构特征要理解清楚,对空间想象能力要求较高,属于难题.
四、解答题
17.联合国粮农组织对某地区最近10年的粮食需求量部分统计数据如下表:
年份 | 2010 | 2012 | 2014 | 2016 | 2018 |
需求量(万吨) | 236 | 246 | 257 | 276 | 286 |
(1)由所给数据可知,年需求量与年份之间具有线性相关关系,我们以“年份—2014”为横坐标,“需求量”为纵坐标,请完成如下数据处理表格:
年份—2014 |
|
| 0 |
|
|
需求量—257 |
|
| 0 |
|
|
(2)根据回归直线方程分析,2020年联合国粮农组织计划向该地区投放粮食300万吨,问是否能够满足该地区的粮食需求?
参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为: ,.
【答案】(1)见解析;(2)能够满足.
【解析】(1)根据表中数据,结合以“年份—2014”为横坐标,“需求量”为纵坐标的要求即可完成表格;
(2)根据表中及所给公式可求得线性回归方程,由线性回归方程预测2020年的粮食需求量,即可作出判断.
【详解】
(1)由所给数据和已知条件,对数据处理表格如下:
年份—2014 | 0 | 2 | 4 | ||
需求量—257 | 0 | 19 | 29 |
(2)由题意可知,变量与之间具有线性相关关系,
由(1)中表格可得,,,
,.由上述计算结果可知,所求回归直线方程为,
利用回归直线方程,可预测2020年的粮食需求量为:
(万吨),
因为,故能够满足该地区的粮食需求.
【点睛】
本题考查了线性回归直线的求法及预测应用,属于基础题.
18.的内角,,的对边分别为,,,其面积记为,满足.
(1)求;
(2)若,求的值.
【答案】(1);(2)
【解析】(1)根据三角形面积公式及平面向量数量积定义代入公式,即可求得,进而求得的值;
(2)根据正弦定理将边化为角,结合(1)中的值,即可将表达式化为的三角函数式;结合正弦和角公式与辅助角公式化简,即可求得和,进而由正弦定理确定,代入整式即可求解.
【详解】
(1)因为,
所以由三角形面积公式及平面向量数量积运算可得
,
所以.
因为,
所以.
(2)因为,
所以由正弦定理代入化简可得,
由(1),代入可得,
展开化简可得,
根据辅助角公式化简可得.
因为,所以,所以,
所以为等腰三角形,且,
所以.
【点睛】
本题考查了正弦定理在解三角形中的应用,三角形面积公式的应用,平面向量数量积的运算,正弦和角公式及辅助角公式的简单应用,属于基础题.
19.如图所示,四棱柱中,底面为梯形,,,,,,.
(1)求证:;
(2)若平面平面,求二面角的余弦值.
【答案】(1)证明见解析(2)
【解析】(1)取中点为,连接,,,,根据线段关系可证明为等边三角形,即可得;由为等边三角形,可得,从而由线面垂直判断定理可证明平面,即可证明.
(2)以为原点,,,为,,轴建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.
【详解】
(1)证明:取中点为,连接,,,如下图所示:
因为,,,
所以,故为等边三角形,则.
连接,因为,,
所以为等边三角形,则.
又,所以平面.
因为平面,
所以.
(2)由(1)知,
因为平面平面,平面,
所以平面,
以为原点,,,为,,轴建立如图所示的空间直角坐标系,
易求,则,,,,
则,,.
设平面的法向量,
则即令,则,,
故.
设平面的法向量,
则则
令,则,,故,
所以.
由图可知,二面角为钝二面角角,
所以二面角的余弦值为.
【点睛】
本题考查线面垂直的判定,由线面垂直判定线线垂直,由空间向量法求平面与平面形成二面角的大小,属于中档题.
20.市民小张计划贷款60万元用于购买一套商品住房,银行给小张提供了两种贷款方式.①等额本金:每月的还款额呈递减趋势,且从第二个还款月开始,每月还款额与上月还款额的差均相同;②等额本息:每个月的还款额均相同.银行规定,在贷款到账日的次月当天开始首次还款(若2019年7月7日贷款到账,则2019年8月7日首次还款).
已知小张该笔贷款年限为20年,月利率为0.004.
(1)若小张采取等额本金的还款方式,现已得知第一个还款月应还4900元,最后一个还款月应还2510元,试计算小张该笔贷款的总利息;
(2)若小张采取等额本息的还款方式,银行规定,每月还款额不得超过家庭平均月收入的一半,已知小张家庭平均月收入为1万元,判断小张该笔贷款是否能够获批(不考虑其他因素);
(3)对比两种还款方式,从经济利益的角度来考虑,小张应选择哪种还款方式.
参考数据:.
【答案】(1)289200元;(2)能够获批;(3)应选择等额本金还款方式
【解析】(1)由题意可知,等额本金还款方式中,每月的还款额构成一个等差数列,即可由等差数列的前n项和公式求得其还款总额,减去本金即为还款的利息;
(2)根据题意,采取等额本息的还款方式,每月还款额为一等比数列,设小张每月还款额为元,由等比数列求和公式及参考数据,即可求得其还款额,与收入的一半比较即可判断;
(3)计算出等额本息还款方式时所付出的总利息,两个利息比较即可判断.
【详解】
(1)由题意可知,等额本金还款方式中,每月的还款额构成一个等差数列,记为,
表示数列的前项和,则,,
则,
故小张该笔贷款的总利息为元.
(2)设小张每月还款额为元,采取等额本息的还款方式,每月还款额为一等比数列,
则,
所以,
即,
因为,
所以小张该笔贷款能够获批.
(3)小张采取等额本息贷款方式的总利息为:
,
因为,
所以从经济利益的角度来考虑,小张应选择等额本金还款方式.
【点睛】
本题考查了等差数列与等比数列求和公式的综合应用,数列在实际问题中的应用,理解题意是解决问题的关键,属于中档题.
21.已知是圆:的直径,动圆过,两点,且与直线相切.
(1)若直线的方程为,求的方程;
(2)在轴上是否存在一个定点,使得以为直径的圆恰好与轴相切?若存在,求出点的坐标;若不存在,请说明理由.
【答案】(1)或. (2)存在,;
【解析】(1)根据动圆过,两点,可得圆心在的垂直平分线上,由直线的方程为,可知在直线上;设,由动圆与直线相切可得动圆的半径为;又由,及垂径定理即可确定的值,进而确定圆的方程.
(2)方法一:设,可得圆的半径为,根据,可得方程为并化简可得的轨迹方程为.设,,可得的中点,进而由两点间距离公式表示出半径,表示出到轴的距离,代入化简即可求得的值,进而确定所过定点的坐标;方法二:同上可得的轨迹方程为,由抛物线定义可求得,表示出线段的中点的坐标,根据到轴的距离可得等量关系,进而确定所过定点的坐标.
【详解】
(1)因为过点,,所以圆心在的垂直平分线上.
由已知的方程为,且,关于于坐标原点对称,
所以在直线上,故可设.
因为与直线相切,所以的半径为.
由已知得,,又,
故可得,解得或.
故的半径或,
所以的方程为或.
(2)法一:设,由已知得的半径为,.
由于,故可得,化简得的轨迹方程为.
设,,则得,的中点,
则以为直径的圆的半径为:
,
到轴的距离为,
令,①
化简得,即,
故当时,①式恒成立.
所以存在定点,使得以为直径的圆与轴相切.
法二:设,由已知得的半径为,.
由于,故可得,化简得的轨迹方程为.
设,因为抛物线的焦点坐标为,
点在抛物线上,所以,
线段的中点的坐标为,
则到轴的距离为,
而,
故以为径的圆与轴切,
所以当点与重合时,符合题意,
所以存在定点,使得以为直径的圆与轴相切.
【点睛】
本题考查了圆的标准方程求法,动点轨迹方程的求法,抛物线定义及定点问题的解法综合应用,属于难题.
22.已知函数有两个极值点,.
(1)求实数的取值范围;
(2)证明:.
【答案】(1) (2)证明见解析
【解析】(1)先求得导函数,根据两个极值点可知有两个不等实根,构造函数,求得;讨论和两种情况,即可确定零点的情况,即可由零点的情况确定的取值范围;
(2)根据极值点定义可知,,代入不等式化简变形后可知只需证明;构造函数,并求得,进而判断的单调区间,由题意可知,并设,构造函数,并求得,即可判断在内的单调性和最值,进而可得,即可由函数性质得,进而由单调性证明
,即证明,从而证明原不等式成立.
【详解】
(1)函数
则,
因为存在两个极值点,,
所以有两个不等实根.
设,所以.
①当时,,
所以在上单调递增,至多有一个零点,不符合题意.
②当时,令得,
0 | |||
减 | 极小值 | 增 |
所以,即.
又因为,,
所以在区间和上各有一个零点,符合题意,
综上,实数的取值范围为.
(2)证明:由题意知,,
所以,.
要证明,
只需证明,
只需证明.
因为,,所以.
设,则,
所以在上是增函数,在上是减函数.
因为,
不妨设,
设,,
则,
当时,,,
所以,所以在上是增函数,
所以,
所以,即.
因为,所以,
所以.
因为,,且在上是减函数,
所以,
即,
所以原命题成立,得证.
【点睛】
本题考查了利用导数研究函数的极值点,由导数证明不等式,构造函数法的综合应用,极值点偏移证明不等式成立的应用,是高考的常考点和热点,属于难题.