![2020届湖南省郴州市高三第二次教学质量监测数学(理)试题(解析版)01](http://img-preview.51jiaoxi.com/3/3/5617987/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020届湖南省郴州市高三第二次教学质量监测数学(理)试题(解析版)02](http://img-preview.51jiaoxi.com/3/3/5617987/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020届湖南省郴州市高三第二次教学质量监测数学(理)试题(解析版)03](http://img-preview.51jiaoxi.com/3/3/5617987/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020届湖南省郴州市高三第二次教学质量监测数学(理)试题(解析版)
展开2020届湖南省郴州市高三第二次教学质量监测数学(理)试题
一、单选题
1.已知集合,则( )
A. B.
C. D.
【答案】B
【解析】可求出集合,,然后进行交集的运算即可.
【详解】
解:,
;
.
故选:B.
【点睛】
考查描述法、区间表示集合的概念,以及交集及其运算,属于基础题.
2.在复平面内,复数(为虚数单位)对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【答案】C
【解析】化简复数为、的形式,可以确定对应的点位于的象限.
【详解】
解:复数
故复数对应的坐标为位于第三象限
故选:.
【点睛】
本题考查复数代数形式的运算,复数和复平面内点的对应关系,属于基础题.
3.函数在区间上的大致图象如图所示,则可能是( )
A.
B.
C.
D.
【答案】B
【解析】根据特殊值及函数的单调性判断即可;
【详解】
解:当时,,无意义,故排除A;
又,则,故排除D;
对于C,当时,,所以不单调,故排除C;
故选:B
【点睛】
本题考查根据函数图象选择函数解析式,这类问题利用特殊值与排除法是最佳选择,属于基础题.
4.已知数列为等差数列,且,则的值为( )
A. B. C. D.
【答案】B
【解析】由等差数列的性质和已知可得,即可得到,代入由诱导公式计算可得.
【详解】
解:由等差数列的性质可得,解得,
,
故选:B.
【点睛】
本题考查等差数列的下标和公式的应用,涉及三角函数求值,属于基础题.
5.达芬奇的经典之作《蒙娜丽莎》举世闻名.如图,画中女子神秘的微笑,,数百年来让无数观赏者人迷.某业余爱好者对《蒙娜丽莎》的缩小影像作品进行了粗略测绘,将画中女子的嘴唇近似看作一个圆弧,在嘴角处作圆弧的切线,两条切线交于点,测得如下数据:(其中).根据测量得到的结果推算:将《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角大约等于( )
A. B. C. D.
【答案】A
【解析】由已知,设.可得.于是可得,进而得出结论.
【详解】
解:依题意,设.
则.
,.
设《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角为.
则,
.
故选:A.
【点睛】
本题考查了直角三角形的边角关系、三角函数的单调性、切线的性质,考查了推理能力与计算能力,属于中档题.
6.如图,是圆的一条直径,为半圆弧的两个三等分点,则( )
A. B. C. D.
【答案】B
【解析】连接、,即可得到,,再根据平面向量的数量积及运算律计算可得;
【详解】
解:连接、,
,是半圆弧的两个三等分点, ,且,
所以四边形为棱形,
.
故选:B
【点睛】
本题考查平面向量的数量积及其运算律的应用,属于基础题.
7.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有( )种.
A.408 B.120 C.156 D.240
【答案】A
【解析】利用间接法求解,首先对6门课程全排列,减去“乐”排在第一节的情况,再减去“射”和“御”两门课程相邻的情况,最后还需加上“乐”排在第一节,且“射”和“御”两门课程相邻的情况;
【详解】
解:根据题意,首先不做任何考虑直接全排列则有(种),
当“乐”排在第一节有(种),
当“射”和“御”两门课程相邻时有(种),
当“乐”排在第一节,且“射”和“御”两门课程相邻时有(种),
则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有(种),
故选:.
【点睛】
本题考查排列、组合的应用,注意“乐”的排列对“射”和“御”两门课程相邻的影响,属于中档题.
8.已知定义在上的偶函数满足,且在区间上是减函数,令,则的大小关系为( )
A. B.
C. D.
【答案】C
【解析】可设,根据在上为偶函数及便可得到:,可设,,且,根据在上是减函数便可得出,从而得出在上单调递增,再根据对数的运算得到、、的大小关系,从而得到的大小关系.
【详解】
解:因为,即,又,
设,根据条件,,;
若,,且,则:;
在上是减函数;
;
;
在上是增函数;
所以,
故选:C
【点睛】
考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设,通过条件比较与,函数的单调性的应用,属于中档题.
9.下列结论中正确的个数是( )
①已知函数是一次函数,若数列通项公式为,则该数列是等差数列;
②若直线上有两个不同的点到平面的距离相等,则;
③在中,“”是“”的必要不充分条件;
④若,则的最大值为2.
A.1 B.2 C.3 D.0
【答案】B
【解析】根据等差数列的定义,线面关系,余弦函数以及基本不等式一一判断即可;
【详解】
解:①已知函数是一次函数,若数列的通项公式为,
可得为一次项系数),则该数列是等差数列,故①正确;
②若直线上有两个不同的点到平面的距离相等,则与可以相交或平行,故②错误;
③在中,,而余弦函数在区间上单调递减,故 “”可得“”,由“”可得“”,故“”是“”的充要条件,故③错误;
④若,则,所以,当且仅当时取等号,故④正确;
综上可得正确的有①④共2个;
故选:B
【点睛】
本题考查命题的真假判断,主要是正弦定理的运用和等比数列的求和公式、等差数列的定义和不等式的性质,考查运算能力和推理能力,属于中档题.
10.已知函数,则的值等于( )
A.2018 B.1009 C.1010 D.2020
【答案】C
【解析】首先,根据二倍角公式和辅助角公式化简函数解析式,根据所求函数的周期性,得到其周期为4,然后借助于三角函数的周期性确定其值即可.
【详解】
解: .
,
,
的周期为,
,, ,,
.
.
故选:C
【点睛】
本题重点考查了三角函数的图象与性质、三角恒等变换等知识,掌握辅助角公式化简函数解析式是解题的关键,属于中档题.
11.设双曲线的左右焦点分别为,点.已知动点在双曲线的右支上,且点不共线.若的周长的最小值为,则双曲线的离心率的取值范围是( )
A. B. C. D.
【答案】A
【解析】依题意可得
即可得到,从而求出双曲线的离心率的取值范围;
【详解】
解:依题意可得如下图象,
所以
则
所以
所以
所以,即
故选:A
【点睛】
本题考查双曲线的简单几何性质,属于中档题.
12.已知函数,,当时,不等式恒成立,则实数a的取值范围为( )
A. B. C. D.
【答案】D
【解析】由变形可得,可知函数在为增函数, 由恒成立,求解参数即可求得取值范围.
【详解】
,即函数在时是单调增函数.
则恒成立.
.
令,则
时,单调递减,时单调递增.
故选:D.
【点睛】
本题考查构造函数,借助单调性定义判断新函数的单调性问题,考查恒成立时求解参数问题,考查学生的分析问题的能力和计算求解的能力,难度较难.
二、填空题
13.的展开式中,项的系数是__________.
【答案】240
【解析】利用二项式展开式的通项公式,令x的指数等于3,计算展开式中含有项的系数即可.
【详解】
由题意得:,只需,可得,
代回原式可得,
故答案:240.
【点睛】
本题主要考查二项式展开式的通项公式及简单应用,相对不难.
14.已知数列的前项和为,且满足,则______
【答案】
【解析】对题目所给等式进行赋值,由此求得的表达式,判断出数列是等比数列,由此求得的值.
【详解】
解:,可得时,,
时,,又,
两式相减可得,即,上式对也成立,可得数列是首项为1,公比为的等比数列,可得.
【点睛】
本小题主要考查已知求,考查等比数列前项和公式,属于中档题.
15.直线与抛物线交于两点,若,则弦的中点到直线的距离等于________.
【答案】
【解析】由已知可知直线过抛物线的焦点,求出弦的中点到抛物线准线的距离,进一步得到弦的中点到直线的距离.
【详解】
解:如图,
直线过定点,,
而抛物线的焦点为,,
弦的中点到准线的距离为,
则弦的中点到直线的距离等于.
故答案为:.
【点睛】
本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,体现了数学转化思想方法,属于中档题.
16.平行四边形中,,为边上一点(不与重合),将平行四边形沿折起,使五点均在一个球面上,当四棱锥体积最大时,球的表面积为________.
【答案】
【解析】依题意可得、、、四点共圆,即可得到,从而得到三角形为正三角形,利用余弦定理可得,且,要使四棱锥体积最大,当且仅当面面时体积取得最大值,利用正弦定理求出的外接圆的半径,再又可证面,则外接球的半径,即可求出球的表面积;
【详解】
解:依题意可得、、、四点共圆,
所以
因为,
所以,,
所以三角形为正三角形,则,,
利用余弦定理得
即,解得,则
所以,
当面面时,取得最大,
所以的外接圆的半径,
又面面,,且面面, 面
所以面,
所以外接球的半径
所以
故答案为:
【点睛】
本题考查多面体的外接球的相关计算,正弦定理、余弦定理的应用,属于中档题.
三、解答题
17.已知的内角的对边分别为,且.
(Ⅰ)求;
(Ⅱ)若的周长是否有最大值?如果有,求出这个最大值,如果没有,请说明理由.
【答案】(Ⅰ);(Ⅱ)有最大值,最大值为3.
【解析】(Ⅰ)利用正弦定理将角化边,再由余弦定理计算可得;
(Ⅱ)由正弦定理可得,则,再根据正弦函数的性质计算可得;
【详解】
(Ⅰ)由得
再由正弦定理得
因此,
又因为,所以.
(Ⅱ)当时,的周长有最大值,且最大值为3,
理由如下:
由正弦定理得,
所以,
所以.
因为,所以,
所以当即时,取到最大值2,
所以的周长有最大值,最大值为3.
【点睛】
本题考查正弦定理、余弦定理解三角形,以及三角函数的性质的应用,属于中档题.
18.已知,点分别为椭圆的左、右顶点,直线交于另一点为等腰直角三角形,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点的直线与椭圆交于两点,总使得为锐角,求直线斜率的取值范围.
【答案】(Ⅰ);(Ⅱ).
【解析】(Ⅰ)由题意可知:由,求得点坐标,即可求得椭圆的方程;
(Ⅱ)设直线,代入椭圆方程,由韦达定理,由,由为锐角,则,由向量数量积的坐标公式,即可求得直线斜率的取值范围.
【详解】
解:(Ⅰ)根据题意是等腰直角三角形
,
,
设由
得
则
代入椭圆方程得
椭圆的方程为
(Ⅱ)根据题意,直线的斜率存在,可设方程为
设
由得
由直线与椭圆有两个不同的交点则
即
得
又
为锐角则
即
②
由①②得或
故直线斜率可取值范围是
【点睛】
本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查向量数量积的坐标运算,韦达定理,考查计算能力,属于中档题.
19.如图,在四棱锥中,平面平面,.
(Ⅰ)求证:平面;
(Ⅱ)若锐二面角的余弦值为,求直线与平面所成的角.
【答案】(Ⅰ)详见解析;(Ⅱ).
【解析】(Ⅰ)由余弦定理解得,即可得到,由面面垂直的性质可得平面,即可得到,从而得证;
(Ⅱ)在平面中,过点作于点,则平面,如图所示建立空间直角坐标系,设,其中,利用空间向量法得到二面角的余弦,即可得到的关系,从而得解;
【详解】
解:(Ⅰ)证明:在中,,解得,
则,从而
因为平面平面,平面平面
所以平面,
又因为平面,
所以,
因为,,平面,平面,所以平面;
(Ⅱ) 解:在平面中,过点作于点,则平面,如图所示建立空间直角坐标系,设,其中,则
设平面的法向量为,则
,即,
令,则
又平面的一个法向量,则
从而,故
则直线与平面所成的角为,大小为.
【点睛】
本题考查线面垂直的判定,面面垂直的性质定理的应用,利用空间向量法解决立体几何问题,属于中档题.
20.11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为,乙每次投球命中的概率为,且各次投球互不影响.
(1)经过1轮投球,记甲的得分为,求的分布列;
(2)若经过轮投球,用表示经过第轮投球,累计得分,甲的得分高于乙的得分的概率.
①求;
②规定,经过计算机计算可估计得,请根据①中的值分别写出a,c关于b的表达式,并由此求出数列的通项公式.
【答案】(1)分布列见解析;(2)①;②,.
【解析】(1)经过1轮投球,甲的得分的取值为,记一轮投球,甲投中为事件,乙投中为事件,相互独立,计算概率后可得分布列;
(2)由(1)得,由两轮的得分可计算出,计算时可先计算出经过2轮后甲的得分的分布列(的取值为),然后结合的分布列和的分布可计算,
由,代入,得两个方程,解得,从而得到数列的递推式,变形后得是等比数列,由等比数列通项公式得,然后用累加法可求得.
【详解】
(1)记一轮投球,甲命中为事件,乙命中为事件,相互独立,由题意,,甲的得分的取值为,
,
,
,
∴的分布列为:
-1 | 0 | 1 | |
(2)由(1),
,
同理,经过2轮投球,甲的得分取值:
记,,,则
,,,,
由此得甲的得分的分布列为:
-2 | -1 | 0 | 1 | 2 | |
∴,
∵,,
∴,,∴,
代入得:,
∴,
∴数列是等比数列,公比为,首项为,
∴.
∴.
【点睛】
本题考查随机变量的概率分布列,考查相互独立事件同时发生的概率,考查由数列的递推式求通项公式,考查学生的转化与化归思想,本题难点在于求概率分布列,特别是经过2轮投球后甲的得分的概率分布列,这里可用列举法写出各种可能,然后由独立事件的概率公式计算出概率.
21.设函数,其中是自然对数的底数.
(Ⅰ)若在上存在两个极值点,求的取值范围;
(Ⅱ)若,函数与函数的图象交于,且线段的中点为,证明:.
【答案】(Ⅰ);(Ⅱ)详见解析.
【解析】(Ⅰ)依题意在上存在两个极值点,等价于在有两个不等实根,由参变分类可得,令,利用导数研究的单调性、极值,从而得到参数的取值范围;
(Ⅱ)由题解得,,要证成立,只需证:,即:,只需证:,设,即证:,再分别证明,即可;
【详解】
解:(Ⅰ)由题意可知,,
在上存在两个极值点,等价于在有两个不等实根,
由可得,,令,
则,令,
可得,当时,,
所以在上单调递减,且
当时,单调递增;
当时,单调递减;
所以是的极大值也是最大值,又当,当大于0趋向与0,
要使在有两个根,则,
所以的取值范围为;
(Ⅱ)由题解得,,要证成立,
只需证:
即:,
只需证:
设,即证:
要证,只需证:
令,则
在上为增函数
,即成立;
要证,只需证明:
令,则
在上为减函数,,即成立
成立,所以成立.
【点睛】
本题考查利用导数研究函数的单调性、极值,利用导数证明不等式,属于难题;
22.在直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,射线的极坐标方程为,射线的极坐标方程为.
(Ⅰ)写出曲线的极坐标方程,并指出是何种曲线;
(Ⅱ)若射线与曲线交于两点,射线与曲线交于两点,求面积的取值范围.
【答案】(Ⅰ),曲线是以为圆心,为半径的圆;(Ⅱ).
【解析】(Ⅰ)由曲线的参数方程能求出曲线的普通方程,由此能求出曲线的极坐标方程.
(Ⅱ)令,,则,利用诱导公式及二倍角公式化简,再由余弦函数的性质求出面积的取值范围;
【详解】
解:(Ⅰ)由(为参数)化为普通方程为
,整理得
曲线是以为圆心,为半径的圆.
(Ⅱ)令
,,,,
面积的取值范围为
【点睛】
本题考查曲线的极坐标方程的求法,考查三角形的面积的求法,考查参数方程、直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,属于中档题.
23.设函数.
(1)若,求实数的取值范围;
(2)证明:,恒成立.
【答案】(1)(2)证明见解析
【解析】(1)将不等式化为,利用零点分段法,求得不等式的解集.
(2)将要证明的不等式转化为证,恒成立,由的最小值为,得到只要证,即证,利用绝对值不等式和基本不等式,证得上式成立.
【详解】
(1)∵,∴,即
当时,不等式化为,∴
当时,不等式化为,此时无解
当时,不等式化为,∴
综上,原不等式的解集为
(2)要证,恒成立
即证,恒成立
∵的最小值为-2,∴只需证,即证
又
∴成立,∴原题得证
【点睛】
本题考查绝对值不等式的性质、解法,基本不等式等知识;考查推理论证能力、运算求解能力;考查化归与转化,分类与整合思想.