2020届江苏省苏州市吴中区高三高考模拟数学试题(解析版)
展开2020届江苏省苏州市吴中区高三高考模拟数学试题
一、填空题
1.已知,为虚数单位,且,则=_____.
【答案】4
【解析】【详解】
解:利用复数相等,可知由有.
2.已知集合,,则__________.
【答案】
【解析】解一元二次不等式化简集合,再进行集合的交运算,即可得到答案.
【详解】
,,
.
故答案为:.
【点睛】
本题考查一元二次不等式的求解、集合的交运算,考查运算求解能力,属于基础题.
3.如图是九位评委打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均分为_______.
【答案】85
【解析】写出茎叶图对应的所有的数,去掉最高分,最低分,再求平均分.
【详解】
解:所有的数为:77,78,82,84,84,86,88,93,94,共9个数,
去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7个数,
平均分为,
故答案为85.
【点睛】
本题考查茎叶图及平均数的计算,属于基础题.
4.执行如图所示的伪代码,若输出的y的值为13,则输入的x的值是_______.
【答案】8
【解析】根据伪代码逆向运算求得结果.
【详解】
输入,若,则,不合题意
若,则,满足题意
本题正确结果:
【点睛】
本题考查算法中的语言,属于基础题.
5.甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,则“甲、乙两人恰好在同一企业”的概率为_________.
【答案】
【解析】求出所有可能,找出符合可能的情况,代入概率计算公式.
【详解】
解:甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,共有种,甲乙在同一个公司有两种可能,
故概率为,
故答案为.
【点睛】
本题考查古典概型及其概率计算公式,属于基础题
6.函数的定义域为_____________.
【答案】
【解析】由题意可得,,解不等式可求.
【详解】
解:由题意可得,,
解可得,,
故答案为.
【点睛】
本题主要考查了函数的定义域的求解,属于基础题.
7.已知双曲线的右准线与渐近线的交点在抛物线上,则实数的值为___________.
【答案】
【解析】求出双曲线的渐近线方程,右准线方程,得到交点坐标代入抛物线方程求解即可.
【详解】
解:双曲线的右准线,渐近线,
双曲线的右准线与渐近线的交点,
交点在抛物线上,
可得:,
解得.
故答案为.
【点睛】
本题考查双曲线的简单性质以及抛物线的简单性质的应用,是基本知识的考查,属于基础题.
8.已知一个正四棱锥的侧棱与底面所成的角为,侧面积为,则该棱锥的体积为__________.
【答案】
【解析】如图所示,正四棱锥,为底面的中心,点为的中点,则,设,根据正四棱锥的侧面积求出的值,再利用勾股定理求得正四棱锥的高,代入体积公式,即可得到答案.
【详解】
如图所示,正四棱锥,为底面的中心,点为的中点,
则,设,
,,,
,
,
.
故答案为:.
【点睛】
本题考查棱锥的侧面积和体积,考查函数与方程思想、转化与化归思想,考查运算求解能力.
9.公比为正数的等比数列的前项和为,若,,则的值为__________.
【答案】56
【解析】根据已知条件求等比数列的首项和公比,再代入等比数列的通项公式,即可得到答案.
【详解】
,,
.
故答案为:.
【点睛】
本题考查等比数列的通项公式和前项和公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.
10.在平面直角坐标系中,已知圆,圆.直线与圆相切,且与圆相交于,两点,则弦的长为_________
【答案】
【解析】利用直线与圆相切求出斜率,得到直线的方程,几何法求出
【详解】
解:直线与圆相切,圆心为
由,得或,
当时,到直线的距离,不成立,
当时,与圆相交于,两点,到直线的距离,
故答案为.
【点睛】
考查直线与圆的位置关系,相切和相交问题,属于中档题.
11.将函数的图像向右平移个单位,得到函数的图像,则函数在区间上的值域为__________.
【答案】
【解析】根据图像的平移变换得到函数的解析式,再利用整体思想求函数的值域.
【详解】
函数的图像向右平移个单位得,
,
,
.
故答案为:.
【点睛】
本题考查三角函数图像的平移变换、值域的求解,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意整体思想的运用.
12.己知函数,若关于的不等式对任意的恒成立,则实数的取值范围是______.
【答案】
【解析】首先判断出函数为定义在上的奇函数,且在定义域上单调递增,由此不等式对任意的恒成立,可转化为在上恒成立,进而建立不等式组,解出即可得到答案.
【详解】
解:函数的定义域为,且,
函数为奇函数,
当时,函数,显然此时函数为增函数,
函数为定义在上的增函数,
不等式即为,
在上恒成立,
,解得.
故答案为.
【点睛】
本题考查函数单调性及奇偶性的综合运用,考查不等式的恒成立问题,属于常规题目.
13.如图,己知半圆的直径,点是弦(包含端点,)上的动点,点在弧上.若是等边三角形,且满足,则的最小值为___________.
【答案】8
【解析】建系,设,表示出点坐标,则,根据的范围得出答案.
【详解】
解:以为原点建立平面坐标系如图所示:则,,,,
设,则,,
,,,
,
,
显然当取得最大值4时,取得最小值8.
故答案为:8.
【点睛】
本题考查了平面向量的数量积运算,坐标运算,属于中档题.
14.记实数中的最大数为,最小数为.已知实数且三数能构成三角形的三边长,若,则的取值范围是 .
【答案】
【解析】试题分析:显然,又,
①当时,,作出可行区域,因抛物线与直线及在第一象限内的交点分别是(1,1)和,从而
②当时,,作出可行区域,因抛物线与直线及在第一象限内的交点分别是(1,1)和,从而
综上所述,的取值范围是。
【考点】不等式、简单线性规划.
二、解答题
15.已知中,角,,的对边分别为,,,已知向量,且.
(Ⅰ)求角的大小;
(Ⅱ)若的面积为,,求.
【答案】(1);(2).
【解析】试题分析:(1)利用已知及平面向量数量积运算可得,利用正弦定理可得,结合,可求,从而可求的值;(2)由三角形的面积可解得,利用余弦定理可得,故可得.
试题解析:(1)∵,,,
∴,
∴,
即 ,又∵,∴,
又∵,∴.
(2)∵,∴,
又,即,∴,
故.
16.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E, F分别是棱AB, PC的中点.求证:
(1) EF //平面PAD;
(2)平面PCE⊥平面PCD.
【答案】(1)见解析;(2)见解析
【解析】(1)取的中点构造平行四边形,得到,从而证出平面;
(2)先证平面,再利用面面垂直的判定定理得到平面平面.
【详解】
证明:(1)如图,取的中点,连接,,
是棱的中点,底面是矩形,
,且,
又,分别是棱,的中点,
,且,
,且,
四边形为平行四边形,
,
又平面,平面,
平面;
(2),点是棱的中点,
,
又,,
平面,平面,
,
底面是矩形,,
平面,平面,且,
平面,
又平面,,
,,
又平面,平面,且,
平面,
又平面,
平面平面.
【点睛】
本题主要考查线面平行的判定,面面垂直的判定,首选判定定理,是中档题.
17.如图,设点为椭圆的右焦点,圆过且斜率为的直线交圆于两点,交椭圆于点两点,已知当时,
(1)求椭圆的方程.
(2)当时,求的面积.
【答案】(1)(2)
【解析】(1)先求出圆心到直线的距离为,再根据得到,解之即得a的值,再根据c=1求出b的值得到椭圆的方程.(2)先求出,,再求得的面积.
【详解】
(1)因为直线过点,且斜率.
所以直线的方程为,即,
所以圆心到直线的距离为,
又因为,圆的半径为,
所以,即,
解之得,或(舍去).
所以,
所以所示椭圆的方程为 .
(2)由(1)得,椭圆的右准线方程为,离心率,
则点到右准线的距离为,
所以,即,把代入椭圆方程得,,
因为直线的斜率,
所以,
因为直线经过和,
所以直线的方程为,
联立方程组得,
解得或,
所以,
所以的面积.
【点睛】
本题主要考查直线和圆、椭圆的位置关系,考查椭圆的方程的求法,考查三角形面积的计算,意在考查学生对这些知识的掌握水平和分析推理计算能力.
18.如图为某大江的一段支流,岸线与近似满足∥,宽度为.圆为江中的一个半径为的小岛,小镇位于岸线上,且满足岸线,.现计划建造一条自小镇经小岛至对岸的水上通道(图中粗线部分折线段,在右侧),为保护小岛,段设计成与圆相切.设.
(1)试将通道的长表示成的函数,并指出定义域;
(2)若建造通道的费用是每公里100万元,则建造此通道最少需要多少万元?
【答案】(1),定义域是.(2)百万
【解析】(1)以为原点,直线为轴建立如图所示的直角坐标系,设,利用直线与圆相切得到,再代入这一关系中,即可得答案;
(2)利用导数求函数的最小值,即可得答案;
【详解】
以为原点,直线为轴建立如图所示的直角坐标系.
设,则,,.
因为,
所以直线的方程为,
即,
因为圆与相切,所以,
即,从而得,
在直线的方程中,令,得,
所以,
所以
当时,,设锐角满足,则,
所以关于的函数是,定义域是.
(2)要使建造此通道费用最少,只要通道的长度即最小.
令,得,设锐角,满足,得.
列表:
0 | |||
减 | 极小值 | 增 |
所以时,,所以建造此通道的最少费用至少为百万元.
【点睛】
本题考查三角函数模型的实际应用、利用导数求函数的最小值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.
19.已知函数,.
(1)当时,
①求函数在点处的切线方程;
②比较与的大小;
(2)当时,若对时,,且有唯一零点,证明:.
【答案】(1)①见解析,②见解析;(2)见解析
【解析】(1)①把代入函数解析式,求出函数的导函数得到,再求出,利用直线方程的点斜式求函数在点处的切线方程;
②令,利用导数研究函数的单调性,可得当时,;当时,;当时,.
(2)由题意,,在上有唯一零点.利用导数可得当时,在上单调递减,当,时,在,上单调递增,得到.由在恒成立,且有唯一解,可得,得,即.令,则,再由在上恒成立,得在上单调递减,进一步得到在上单调递增,由此可得.
【详解】
解:(1)①当时,,,,
又,切线方程为,即;
②令,
则,
在上单调递减.
又,
当时,,即;
当时,,即;
当时,,即.
证明:(2)由题意,,
而,
令,解得.
,,
在上有唯一零点.
当时,,在上单调递减,
当,时,,在,上单调递增.
.
在恒成立,且有唯一解,
,即,
消去,得,
即.
令,则,
在上恒成立,
在上单调递减,
又, ,
.
在上单调递增,
.
【点睛】
本题考查利用导数研究过曲线上某点处的切线方程,考查利用导数研究函数的单调性,考查逻辑思维能力与推理论证能力,属难题.
20.若数列满足:对于任意,均为数列中的项,则称数列为“数列”.
(1)若数列的前项和,,试判断数列是否为“数列”?说明理由;
(2)若公差为的等差数列为“数列”,求的取值范围;
(3)若数列为“数列”,,且对于任意,均有,求数列的通项公式.
【答案】(1)不是,见解析(2)(3)
【解析】(1)利用递推关系求出数列的通项公式,进一步验证时,是否为数列中的项,即可得答案;
(2)由题意得,再对公差进行分类讨论,即可得答案;
(3)由题意得数列为等差数列,设数列的公差为,再根据不等式得到公差的值,即可得答案;
【详解】
(1)当时,
又,所以.
所以
当时,,而,
所以时,不是数列中的项,故数列不是为“数列”
(2)因为数列是公差为的等差数列,
所以.
因为数列为“数列”
所以任意,存在,使得,即有.
①若,则只需,使得,从而得是数列中的项.
②若,则.此时,当时,不为正整数,所以不符合题意.综上,.
(3)由题意,所以,
又因为,且数列为“数列”,
所以,即,所以数列为等差数列.
设数列的公差为,则有,
由,得,
整理得,①
.②
若,取正整数,
则当时,,
与①式对应任意恒成立相矛盾,因此.
同样根据②式可得,
所以.又,所以.
经检验当时,①②两式对应任意恒成立,
所以数列的通项公式为.
【点睛】
本题考查数列新定义题、等差数列的通项公式,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力,难度较大.
21.已知变换将平面上的点,分别变换为点,.设变换对应的矩阵为.
(1)求矩阵;
(2)求矩阵的特征值.
【答案】(1)(2)1或6
【解析】(1)设,根据变换可得关于的方程,解方程即可得到答案;
(2)求出特征多项式,再解方程,即可得答案;
【详解】
(1)设,则,,
即,解得,则.
(2)设矩阵的特征多项式为,可得,
令,可得或.
【点睛】
本题考查矩阵的求解、矩阵的特征值,考查函数与方程思想、转化与化归思想,考查运算求解能力.
22.以坐标原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线为参数)与圆的位置关系.
【答案】直线与圆C相切.
【解析】首先把直线和圆转换为直角坐标方程,进一步利用点到直线的距离的应用求出直线和圆的位置关系.
【详解】
直线为参数),转换为直角坐标方程为.
圆转换为直角坐标方程为,转换为标准形式为,
所以圆心到直线,的距离.
直线与圆C相切.
【点睛】
本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,直线与圆的位置关系式的应用,点到直线的距离公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.
23.[选修4—5:不等式选讲]
已知函数,,若存在实数使成立,求实数的取值范围.
【答案】
【解析】试题分析:先将问题“ 存在实数使成立”转化为“求函数的最大值”,再借助柯西不等式求出的最大值即可获解.
试题解析:
存在实数使成立,等价于的最大值大于,
因为,
由柯西不等式:,
所以,当且仅当时取“”,
故常数的取值范围是.
【考点】柯西不等式即运用和转化与化归的数学思想的运用.
24.如图,在三棱柱中,平面,,且.
(1)求棱与所成的角的大小;
(2)在棱上确定一点,使二面角的平面角的余弦值为.
【答案】(1) (2)
【解析】试题分析:(1)因为AB⊥AC,A1B⊥平面ABC,所以以A为坐标原点,分别以AC、AB所在直线分别为x轴和y轴,以过A,且平行于BA1的直线为z轴建立空间直角坐标系,由AB=AC=A1B=2求出所要用到的点的坐标,求出棱AA1与BC上的两个向量,由向量的夹角求棱AA1与BC所成的角的大小;
(2)设棱B1C1上的一点P,由向量共线得到P点的坐标,然后求出两个平面PAB与平面ABA1的一个法向量,把二面角P-AB-A1的平面角的余弦值为,转化为它们法向量所成角的余弦值,由此确定出P点的坐标.
试题解析:
解(1)如图,以为原点建立空间直角坐标系,
则,
.
,
故与棱所成的角是.
(2)为棱中点,
设,则.
设平面的法向量为,,
则,
故
而平面的法向量是,则,
解得,即为棱中点,其坐标为.
点睛:本题主要考查线面垂直的判定与性质,以及利用空间向量求二面角.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.
25.设,,其中.
(1)当时,求的值;
(2)对,证明:恒为定值.
【答案】(1)1(2)1
【解析】分析:(1)当时可得,可得.(2)先得到关系式,累乘可得,从而可得,即为定值.
详解:(1)当时,,
又,
所以.
(2)
即,
由累乘可得,
又,
所以.
即恒为定值1.
点睛:本题考查组合数的有关运算,解题时要注意所给出的的定义,并结合组合数公式求解.由于运算量较大,解题时要注意运算的准确性,避免出现错误.