2020届陕西省渭南市临渭区高三模拟考试数学(理)试题(解析版)
展开2020届陕西省渭南市临渭区高三模拟考试数学(理)试题
一、单选题
1.若集合,,则( )
A. B. C. D.
【答案】A
【解析】用转化的思想求出中不等式的解集,再利用并集的定义求解即可.
【详解】
解:由集合,解得,
则
故选:.
【点睛】
本题考查了并集及其运算,分式不等式的解法,熟练掌握并集的定义是解本题的关键.属于基础题.
2.已知为虚数单位,实数满足,则 ( )
A.1 B. C. D.
【答案】D
【解析】 ,
则
故选D.
3.已知等差数列的前项和为,若,,则数列的公差为( )
A. B. C. D.
【答案】D
【解析】根据等差数列公式直接计算得到答案.
【详解】
依题意,,故,故,故,故选:D.
【点睛】
本题考查了等差数列的计算,意在考查学生的计算能力.
4.函数的图像大致为( )
A. B.
C. D.
【答案】A
【解析】根据排除,,利用极限思想进行排除即可.
【详解】
解:函数的定义域为,恒成立,排除,,
当时,,当,,排除,
故选:.
【点睛】
本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题.
5.如图,在中,,是上一点,若,则实数的值为( )
A. B. C. D.
【答案】C
【解析】由题意,可根据向量运算法则得到(1﹣m),从而由向量分解的唯一性得出关于t的方程,求出t的值.
【详解】
由题意及图,,
又,,所以,∴(1﹣m),
又t,所以,解得m,t,
故选C.
【点睛】
本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题.
6.陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为( )
A. B.
C. D.
【答案】C
【解析】根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积.
【详解】
最上面圆锥的母线长为,底面周长为,侧面积为,下面圆锥的母线长为,底面周长为,侧面积为,没被挡住的部分面积为,中间圆柱的侧面积为.故表面积为,故选C.
【点睛】
本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题.
7.已知函数,下列结论不正确的是( )
A.的图像关于点中心对称 B.既是奇函数,又是周期函数
C.的图像关于直线对称 D.的最大值是
【答案】D
【解析】通过三角函数的对称性以及周期性,函数的最值判断选项的正误即可得到结果.
【详解】
解:,正确;
,为奇函数,周期函数,正确;
,正确;
D: ,令,则,,,,则时,或时,即在上单调递增,在和上单调递减;
且,,,故D错误.
故选:.
【点睛】
本题考查三角函数周期性和对称性的判断,利用导数判断函数最值,属于中档题.
8.由曲线y=x2与曲线y2=x所围成的平面图形的面积为( )
A.1 B. C. D.
【答案】B
【解析】首先求得两曲线的交点坐标,据此可确定积分区间,然后利用定积分的几何意义求解面积值即可.
【详解】
联立方程:可得:,,
结合定积分的几何意义可知曲线y=x2与曲线y2=x所围成的平面图形的面积为:
.
本题选择B选项.
【点睛】
本题主要考查定积分的概念与计算,属于中等题.
9.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)内的概率为( )
(附:若随机变量ξ服从正态分布,则,
.)
A.4.56% B.13.59% C.27.18% D.31.74%
【答案】B
【解析】试题分析:由题意
故选B.
【考点】正态分布
10.已知双曲线的中心在原点且一个焦点为,直线与其相交于,两点,若中点的横坐标为,则此双曲线的方程是
A. B.
C. D.
【答案】D
【解析】根据点差法得,再根据焦点坐标得,解方程组得,,即得结果.
【详解】
设双曲线的方程为,由题意可得,设,,则的中点为,由且,得 , ,即,联立,解得,,故所求双曲线的方程为.故选D.
【点睛】
本题主要考查利用点差法求双曲线标准方程,考查基本求解能力,属于中档题.
11.在中,角的对边分别为,,若,,且,则的面积为( )
A. B. C. D.
【答案】C
【解析】由,可得,化简利用余弦定理可得,解得.即可得出三角形面积.
【详解】
解:,,且,
,化为:.
,解得.
.
故选:.
【点睛】
本题考查了向量共线定理、余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
12.若函数有两个极值点,则实数的取值范围是( )
A. B. C. D.
【答案】A
【解析】试题分析:由题意得有两个不相等的实数根,所以必有解,则,且,∴.
【考点】利用导数研究函数极值点
【方法点睛】函数极值问题的常见类型及解题策略
(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.
(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.
(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.
二、填空题
13.曲线y=e-5x+2在点(0,3)处的切线方程为________.
【答案】.
【解析】先利用导数求切线的斜率,再写出切线方程.
【详解】
因为y′=-5e-5x,所以切线的斜率k=-5e0=-5,所以切线方程是:y-3=-5(x-0),即y=-5x+3.
故答案为y=-5x+3.
【点睛】
(1)本题主要考查导数的几何意义和函数的求导,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是
14.已知的展开式中含有的项的系数是,则展开式中各项系数和为______.
【答案】729
【解析】由二项式定理及展开式通项公式得:,解得,令得:展开式中各项系数和,得解.
【详解】
解:由的展开式的通项,
令,
得含有的项的系数是,
解得,
令得:展开式中各项系数和为,
故答案为:729.
【点睛】
本题考查了二项式定理及展开式通项公式,属于中档题.
15.若实数满足约束条件,设的最大值与最小值分别为,则_____.
【答案】
【解析】画出可行域,平移基准直线到可行域边界位置,由此求得最大值以及最小值,进而求得的比值.
【详解】
画出可行域如下图所示,由图可知,当直线过点时,取得最大值7;过点时,取得最小值2,所以.
【点睛】
本小题主要考查利用线性规划求线性目标函数的最值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画出可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题.
16.在平面直角坐标系中,点在单位圆上,设,且.若,则的值为________________.
【答案】
【解析】根据三角函数定义表示出,由同角三角函数关系式结合求得,而,展开后即可由余弦差角公式求得的值.
【详解】
点在单位圆上,设,
由三角函数定义可知,
因为,则,
所以由同角三角函数关系式可得,
所以
故答案为:.
【点睛】
本题考查了三角函数定义,同角三角函数关系式的应用,余弦差角公式的应用,属于中档题.
三、解答题
17.已知等比数列是递增数列,且.
(1)求数列的通项公式;
(2)若,求数列的前项和.
【答案】(1) (2)
【解析】(1)先利用等比数列的性质,可分别求出的值,从而可求出数列的通项公式;(2)利用错位相减求和法可求出数列的前项和.
【详解】
解:(1)由是递增等比数列,,
联立 ,解得或,
因为数列是递增数列,所以只有符合题意,
则,结合可得,
∴数列的通项公式:;
(2)由,
∴;∴;
那么,①
则,②
将②﹣①得:
.
【点睛】
本题考查了等比数列的性质,考查了等比数列的通项公式,考查了利用错位相减法求数列的前项和.
18.有甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司底薪元,送餐员每单制成元;乙公司无底薪,单以内(含单)的部分送餐员每单抽成元,超过单的部分送餐员每单抽成元.现从这两家公司各随机选取一名送餐员,分别记录其天的送餐单数,得到如下频数分布表:
送餐单数 | 38 | 39 | 40 | 41 | 42 |
甲公司天数 | 10 | 10 | 15 | 10 | 5 |
乙公司天数 | 10 | 15 | 10 | 10 | 5 |
(1)从记录甲公司的天送餐单数中随机抽取天,求这天的送餐单数都不小于单的概率;
(2)假设同一公司的送餐员一天的送餐单数相同,将频率视为概率,回答下列两个问题:
①求乙公司送餐员日工资的分布列和数学期望;
②小张打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,小张应选择哪家公司应聘?说明你的理由.
【答案】(1);(2)①分布列见解析,;②小张应选择甲公司应聘.
【解析】(1)记抽取的3天送餐单数都不小于40为事件,可得(A)的值.
(2)①设乙公司送餐员送餐单数为,可得当时,,以此类推可得:当时,当时,的值.当时,的值,同理可得:当时,.的所有可能取值.可得的分布列及其数学期望.
②依题意,甲公司送餐员日平均送餐单数.可得甲公司送餐员日平均工资,与乙数学期望比较即可得出.
【详解】
解:(1)由表知,50天送餐单数中有30天的送餐单数不小于40单,
记抽取的3天送餐单数都不小于40为事件,
则.
(2)①设乙公司送餐员的送餐单数为,日工资为元,则
当时,;当时,;当时,;
当时,;当时,.
所以的分布列为
228 | 234 | 240 | 247 | 254 | |
.
②依题意,甲公司送餐员的日平均送餐单数为
,
所以甲公司送餐员的日平均工资为元,
因为,所以小张应选择甲公司应聘.
【点睛】
本题考查了随机变量的分布列与数学期望、古典概率计算公式、组合计算公式,考查了推理能力与计算能力,属于中档题.
19.如图,在四棱锥中,侧棱底面,,,,是棱的中点.
(1)求证:平面;
(2)若,点是线段上一点,且,求直线与平面所成角的正弦值.
【答案】(1)证明见解析;(2)
【解析】(1)的中点,连接,,证明四边形是平行四边形可得,故而平面;
(2)以为原点建立空间坐标系,求出平面的法向量,计算与的夹角的余弦值得出答案.
【详解】
(1)证明:取的中点,连接,,
,分别是,的中点,
,,
又,,
,,
四边形是平行四边形,,
又平面,平面,
平面.
(2)解:,,
又,故,
以为原点,以,,为坐标轴建立空间直角坐标系,
则,0,,,0,,,2,,,0,,,2,,
是的中点,是的三等分点,
,1,,,,,
,,,,0,,,2,,
设平面的法向量为,,,则,即,
令可得,,,
,
,
直线与平面所成角的正弦值为.
【点睛】
本题考查了线面平行的判定,空间向量与直线与平面所成角的计算,属于中档题.
20.已知抛物线,直线与交于,两点,且.
(1)求的值;
(2)如图,过原点的直线与抛物线交于点,与直线交于点,过点作轴的垂线交抛物线于点,证明:直线过定点.
【答案】(1);(2)见解析
【解析】(1)联立直线和抛物线,消去可得,求出,,再代入弦长公式计算即可.
(2)由(1)可得,设,计算直线的方程为,代入求出,即可求出,再代入抛物线方程,求出,最后计算直线的斜率,求出直线的方程,化简可得到恒过的定点.
【详解】
(1)由,消去可得,
设,,则,.
,
解得或(舍去),
.
(2)证明:由(1)可得,设,
所以直线的方程为,
当时,,则,
代入抛物线方程,可得,,
所以直线的斜率,
直线的方程为,
整理可得,故直线过定点.
【点睛】
本题第一问考查直线与抛物线相交的弦长问题,需熟记弦长公式.第二问考查直线方程和直线恒过定点问题,需有较强的计算能力,属于难题.
21.已知函数为实数)的图像在点处的切线方程为.
(1)求实数的值及函数的单调区间;
(2)设函数,证明时, .
【答案】(1) ;函数的单调递减区间为,单调递增区间为;(2)详见解析.
【解析】【详解】试题分析:(1)由题得,根据曲线在点处的切线方程,列出方程组,求得的值,得到的解析式,即可求解函数的单调区间;
(2)由(1)得 根据由,整理得,
设,转化为函数的最值,即可作出证明.
试题解析:
(1)由题得,函数的定义域为, ,
因为曲线在点处的切线方程为,
所以解得.
令,得,
当时, , 在区间内单调递减;
当时, , 在区间内单调递增.
所以函数的单调递减区间为,单调递增区间为.
(2)由(1)得, .
由,得,即.
要证,需证,即证,
设,则要证,等价于证: .
令,则,
∴在区间内单调递增, ,
即,故.
22.
已知曲线,直线:(为参数).
(I)写出曲线的参数方程,直线的普通方程;
(II)过曲线上任意一点作与夹角为的直线,交于点,的最大值与最小值.
【答案】(I);(II)最大值为,最小值为.
【解析】试题分析:(I)由椭圆的标准方程设,得椭圆的参数方程为,消去参数即得直线的普通方程为;(II)关键是处理好与角的关系.过点作与垂直的直线,垂足为,则在中,,故将的最大值与最小值问题转化为椭圆上的点,到定直线的最大值与最小值问题处理.
试题解析:(I)曲线C的参数方程为(为参数).直线的普通方程为.
(II)曲线C上任意一点到的距离为.则
.其中为锐角,且.
当时,取到最大值,最大值为.
当时,取到最小值,最小值为.
【考点定位】1、椭圆和直线的参数方程;2、点到直线的距离公式;3、解直角三角形.
23.选修4-5:不等式选讲
已知.
(1)求不等式的解集;
(2)若存在,使得成立,求实数的取值范围
【答案】(1).
(2).
【解析】试题分析:(Ⅰ)通过讨论x的范围,得到关于x的不等式组,解出取并集即可;
(Ⅱ)求出f(x)的最大值,得到关于a的不等式,解出即可.
试题解析:
(1)不等式等价于或
或,解得或,
所以不等式的解集是;
(2),,
,解得实数的取值范围是.
点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.