还剩17页未读,
继续阅读
2020届陕西省铜川市高三第二次高考模拟考试数学(理)试题(解析版)
展开
2020届陕西省铜川市高三第二次高考模拟考试数学(理)试题
一、单选题
1.已知集合,,则等于( )
A. B. C. D.
【答案】B
【解析】解不等式确定集合,然后由补集、并集定义求解.
【详解】
由题意或,
∴,
.
故选:B.
【点睛】
本题考查集合的综合运算,以及一元二次不等式的解法,属于基础题型.
2.复数的共轭复数在复平面内所对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【答案】D
【解析】由复数除法运算求出,再写出其共轭复数,得共轭复数对应点的坐标.得结论.
【详解】
,,对应点为,在第四象限.
故选:D.
【点睛】
本题考查复数的除法运算,考查共轭复数的概念,考查复数的几何意义.掌握复数的运算法则是解题关键.
3.设分别是所对边的边长,则直线与的位置关系是
A.平行 B.重合 C.垂直 D.相交但不垂直
【答案】C
【解析】试题分析:由题意,,由正弦定理得,故两直线垂直
【考点】两直线位置关系
4.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是( )
A. B. C. D.
【答案】B
【解析】将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.
【详解】
设乙,丙,丁分别领到x元,y元,z元,记为,则基本事件有,,,,,,,,,,共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为,
故选:B.
【点睛】
本题主要考查了枚举法求古典概型的方法,属于基础题型.
5.设、是两条不同的直线, 、是两个不同的平面,则的一个充分条件是( )
A.且 B.且 C.且 D.且
【答案】B
【解析】由且可得,故选B.
6.等比数列的各项均为正数,且,则( )
A.12 B.10 C.8 D.
【答案】B
【解析】由等比数列的性质求得,再由对数运算法则可得结论.
【详解】
∵数列是等比数列,∴,,
∴.
故选:B.
【点睛】
本题考查等比数列的性质,考查对数的运算法则,掌握等比数列的性质是解题关键.
7.函数(其中是自然对数的底数)的大致图像为( )
A. B. C. D.
【答案】D
【解析】 由题意得,函数点定义域为且,所以定义域关于原点对称,
且,所以函数为奇函数,图象关于原点对称,
故选D.
8.已知,,由程序框图输出的为( )
A.1 B.0 C. D.
【答案】D
【解析】试题分析:,,所以,所以由程序框图输出的为.故选D.
【考点】1、程序框图;2、定积分.
9.博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )
A.P1•P2= B.P1=P2= C.P1+P2= D.P1<P2
【答案】C
【解析】将三辆车的出车可能顺序一一列出,找出符合条件的即可.
【详解】
三辆车的出车顺序可能为:123、132、213、231、312、321
方案一坐车可能:132、213、231,所以,P1=;
方案二坐车可能:312、321,所以,P1=;
所以P1+P2=
故选C.
【点睛】
本题考查了古典概型的概率的求法,常用列举法得到各种情况下基本事件的个数,属于基础题.
10.三棱锥中,侧棱底面,,,,,则该三棱锥的外接球的表面积为( )
A. B. C. D.
【答案】B
【解析】由题,侧棱底面,,,,则根据余弦定理可得 ,的外接圆圆心
三棱锥的外接球的球心到面的距离 则外接球的半径 ,则该三棱锥的外接球的表面积为
点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径 公式是解答的关键.
11.已知斜率为2的直线l过抛物线C:的焦点F,且与抛物线交于A,B两点,若线段AB的中点M的纵坐标为1,则p=( )
A.1 B. C.2 D.4
【答案】C
【解析】设直线l的方程为x=y,与抛物线联立利用韦达定理可得p.
【详解】
由已知得F(,0),设直线l的方程为x=y,并与y2=2px联立得y2﹣py﹣p2=0,
设A(x1,y1),B(x2,y2),AB的中点C(x0,y0),
∴y1+y2=p,
又线段AB的中点M的纵坐标为1,则y0(y1+y2)=,所以p=2,
故选C.
【点睛】
本题主要考查了直线与抛物线的相交弦问题,利用韦达定理是解题的关键,属中档题.
12.已知函数f(x)=,若关于x的方程f(x)=kx-恰有4个不相等的实数根,则实数k的取值范围是( )
A. B.
C. D.
【答案】D
【解析】由已知可将问题转化为:y=f(x)的图象和直线y=kx-有4个交点,作出图象,由图可得:点(1,0)必须在直线y=kx-的下方,即可求得:k>;再求得直线y=kx-和y=ln x相切时,k=;结合图象即可得解.
【详解】
若关于x的方程f(x)=kx-恰有4个不相等的实数根,
则y=f(x)的图象和直线y=kx-有4个交点.作出函数y=f(x)的图象,如图,
故点(1,0)在直线y=kx-的下方.
∴k×1->0,解得k>.
当直线y=kx-和y=ln x相切时,设切点横坐标为m,
则k==,∴m=.
此时,k==,f(x)的图象和直线y=kx-有3个交点,不满足条件,
故所求k的取值范围是,
故选D..
【点睛】
本题主要考查了函数与方程思想及转化能力,还考查了导数的几何意义及计算能力、观察能力,属于难题.
二、填空题
13.已知,则_____。
【答案】
【解析】由已知求,再利用和角正切公式,求得,
【详解】
因为所以cos
因此.
【点睛】
本题考查了同角三角函数基本关系式与和角的正切公式。
14.某商场一年中各月份的收入、支出情况的统计如图所示,下列说法中正确的是______.
①2至3月份的收入的变化率与11至12月份的收入的变化率相同;
②支出最高值与支出最低值的比是6:1;
③第三季度平均收入为50万元;
④利润最高的月份是2月份.
【答案】①②③
【解析】通过图片信息直接观察,计算,找出答案即可.
【详解】
对于①,2至月份的收入的变化率为20,11至12月份的变化率为20,故相同,正确.
对于②,支出最高值是2月份60万元,支出最低值是5月份的10万元,故支出最高值与支出最低值的比是6:1,正确.
对于③,第三季度的7,8,9月每个月的收入分别为40万元,50万元,60万元,故第三季度的平均收入为50万元,正确.
对于④,利润最高的月份是3月份和10月份都是30万元,高于2月份的利润是80﹣60=20万元,错误.
故答案为①②③.
【点睛】
本题考查利用图象信息,分析归纳得出正确结论,属于基础题目.
15.在的二项展开式中,所有项的系数之和为1024,则展开式常数项的值等于_______.
【答案】
【解析】利用展开式所有项系数的和得n=5,再利用二项式展开式的通项公式,求得展开式中的常数项.
【详解】
因为的二项展开式中,所有项的系数之和为4n=1024, n=5,
故的展开式的通项公式为Tr+1=C·35-r,令,解得r=4,可得常数项为T5=C·3=15,故填15.
【点睛】
本题主要考查了二项式定理的应用、二项式系数的性质,二项式展开式的通项公式,属于中档题.
16.如图,在△ABC中,E为边AC上一点,且,P为BE上一点,且满足,则的最小值为______.
【答案】
【解析】试题分析:根据题意有,因为三点共线,所以有,从而有,所以的最小值是.
【考点】向量的运算,基本不等式.
【方法点睛】该题考查的是有关应用基本不等式求最值的问题,属于中档题目,在解题的过程中,关键步骤在于对题中条件的转化,根据三点共线,结合向量的性质可知,从而等价于已知两个正数的整式形式和为定值,求分式形式和的最值的问题,两式乘积,最后应用基本不等式求得结果,最后再加,得出最后的答案.
三、解答题
17.已知x∈R,设,,记函数.
(1)求函数取最小值时x的取值范围;
(2)设△ABC的角A,B,C所对的边分别为a,b,c,若,,求△ABC的面积S的最大值.
【答案】(1);(2)
【解析】(1)先根据向量的数量积的运算,以及二倍角公式和两角和的正弦公式化简得到f(x)=,再根据正弦函数的性质即可求出答案;(2)先求出C的大小,再根据余弦定理和基本不等式,即可求出,根据三角形的面积公式即可求出答案.
【详解】
(1).
令,k∈Z,即时,,取最小值,
所以,所求的取值集合是;
(2)由,得,
因为,所以,所以,.
在中,由余弦定理,
得,即,当且仅当时取等号,
所以的面积,
因此的面积的最大值为.
【点睛】
本题考查了向量的数量积的运算和二倍角公式,两角和的正弦公式,余弦定理和基本不等式,三角形的面积公式,属于中档题.
18.某调查机构对某校学生做了一个是否同意生“二孩”抽样调查,该调查机构从该校随机抽查了100名不同性别的学生,调查统计他们是同意父母生“二孩”还是反对父母生“二孩”,现已得知100人中同意父母生“二孩”占60%,统计情况如下表:
同意
不同意
合计
男生
a
5
女生
40
d
合计
100
(1)求 a,d 的值,根据以上数据,能否有97.5%的把握认为是否同意父母生“二孩”与性别有关?请说明理由;
(2)将上述调查所得的频率视为概率,现在从所有学生中,采用随机抽样的方法抽取4 位学生进行长期跟踪调查,记被抽取的4位学生中持“同意”态度的人数为 X,求 X 的分布列及数学期望.
附:
0.15
0.100
0.050
0.025
0.010
2.072
2.706
3.841
5.024
6.635
【答案】(1), 有97.5%的把握认为是否同意父母生“二孩”与“性别”有关;(2)详见解析.
【解析】(1)根据表格及同意父母生“二孩”占60%可求出, ,根据公式计算结果即可确定有97.5%的把握认为是否同意父母生“二孩”与“性别”有关(2)由题意可知X服从二项分布,利用公式计算概率及期望即可.
【详解】
(1)因为100人中同意父母生“二孩”占60%,
所以,
文(2)由列联表可得
而
所以有97.5%的把握认为是否同意父母生“二孩”与“性别”有关
(2)①由题知持“同意”态度的学生的频率为,
即从学生中任意抽取到一名持“同意”态度的学生的概率为.由于总体容量很大,
故X服从二项分布,
即从而X的分布列为
X
0
1
2
3
4
X的数学期望为
【点睛】
本题主要考查了相关性检验、二项分布,属于中档题.
19.已知四棱锥中,底面为等腰梯形,,,,丄底面.
(1)证明:平面平面;
(2)过的平面交于点,若平面把四棱锥分成体积相等的两部分,求二面角的余弦值.
【答案】(1)见证明;(2)
【解析】(1)先证明等腰梯形中,然后证明,即可得到丄平面,从而可证明平面丄平面;(2)由,可得到,列出式子可求出,然后建立如图的空间坐标系,求出平面的法向量为,平面的法向量为,由可得到答案.
【详解】
(1)证明:在等腰梯形,,
易得
在中,,
则有,故,
又平面,平面,,
即平面,故平面丄平面.
(2)在梯形中,设,
,,
,而,
即,.
以点为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,建立如图的空间坐标系,则,,
设平面的法向量为,
由得,
取,得,,
同理可求得平面的法向量为,
设二面角的平面角为,
则,
所以二面角的余弦值为.
【点睛】
本题考查了两平面垂直的判定,考查了利用空间向量的方法求二面角,考查了棱锥的体积的计算,考查了空间想象能力及计算能力,属于中档题.
20.设点,动圆经过点且和直线相切.记动圆的圆心的轨迹为曲线.
(1)求曲线的方程;
(2)过点的直线与曲线交于、两点,且直线与轴交于点,设,,求证:为定值.
【答案】(1);(2)见解析.
【解析】(1)已知点轨迹是以为焦点,直线为准线的抛物线,由此可得曲线的方程;
(2)设直线方程为,,则,设,由直线方程与抛物线方程联立消元应用韦达定理得,,由,,用横坐标表示出,然后计算,并代入,可得结论.
【详解】
(1)设动圆圆心,由抛物线定义知:点轨迹是以为焦点,直线为准线的抛物线,设其方程为,则,解得.
∴曲线的方程为;
(2)证明:设直线方程为,,则,设,
由得,①,
则,,②,
由,,得
,,
整理得,,
∴,代入②得:
.
【点睛】
本题考查求曲线方程,考查抛物线的定义,考查直线与抛物线相交问题中的定值问题.解题方法是设而不求的思想方法,即设交点坐标,设直线方程,直线方程代入抛物线(或圆锥曲线)方程得一元二次方程,应用韦达定理得,,代入题中其他条件所求式子中化简变形.
21.已知函数
(1)讨论的单调性;
(2)当时,,求的取值范围.
【答案】(1)见解析;(2)
【解析】(1)f′(x)=(x+1)ex-ax-a=(x+1)(ex-a).对a分类讨论,即可得出单调性.
(2)由xex-ax-a+1≥0,可得a(x+1)≤xex+1,当x=-1时,0≤-+1恒成立.当x>-1时,a令g(x)=,利用导数研究函数的单调性极值与最值即可得出.
【详解】
解法一:(1)
①当时,
-1
-
0
+
↘
极小值
↗
所以在上单调递减,在单调递增.
②当时,的根为或.
若,即,
-1
+
0
-
0
+
↗
极大值
↘
极小值
↗
所以在,上单调递增,在上单调递减.
若,即,
在上恒成立,所以在上单调递增,无减区间.
若,即,
-1
+
0
-
0
+
↗
极大值
↘
极小值
↗
所以在,上单调递增,在上单调递减.
综上:
当时,在上单调递减,在上单调递增;
当时,在,上单调递增,在上单调递减;
自时,在上单调递增,无减区间;
当时,在,上单调递增,在上单调递减.
(2)因为,所以.
当时,恒成立.
当时,.
令,,
设,
因为在上恒成立,
即在上单调递增.
又因为,所以在上单调递减,在上单调递增,
则,所以.
综上,的取值范围为.
解法二:(1)同解法一;
(2)令,
所以,
当时,,则在上单调递增,
所以,满足题意.
当时,
令,
因为,即在上单调递增.
又因为,,
所以在上有唯一的解,记为,
-
0
+
↘
极小值
↗
,满足题意.
当时,,不满足题意.
综上,的取值范围为.
【点睛】
本题考查了利用导数研究函数的单调性极值与最值、分类讨论方法、方程与不等式的解法,考查了推理能力与计算能力,属于难题.
22.在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为ρ=2cos θ,直线l的参数方程为 (t为参数,α为直线的倾斜角).
(1)写出直线l的普通方程和曲线C的直角坐标方程;
(2)若直线l与曲线C有唯一的公共点,求角α的大小.
【答案】(1)当 时,直线l方程为x=-1;当 时,直线l方程为
y=(x+1)tanα; x2+y2=2x (2)或.
【解析】(1)对直线l的倾斜角分类讨论,消去参数即可求出其普通方程;由,即可求出曲线C的直角坐标方程;
(2)将直线l的参数方程代入曲线C的直角坐标方程,根据条件Δ=0,即可求解.
【详解】
(1)当时,直线l的普通方程为x=-1;
当时,消去参数得
直线l的普通方程为y=(x+1)tan α.
由ρ=2cos θ,得ρ2=2ρcos θ,
所以x2+y2=2x,即为曲线C的直角坐标方程.
(2)把x=-1+tcos α,y=tsin α代入x2+y2=2x,
整理得t2-4tcos α+3=0.
由Δ=16cos2α-12=0,得cos2α=,
所以cos α=或cos α=,
故直线l的倾斜角α为或.
【点睛】
本题考查参数方程化普通方程,极坐标方程化直角坐标方程,考查直线与曲线的关系,属于中档题.
23.已知函数.
(1)求不等式的解集;
(2)若关于的不等式在上恒成立,求实数的取值范围.
【答案】(1)或; (2).
【解析】(1)利用绝对值的几何意义,将不等式,转化为不等式或或求解.
(2)根据-2在R上恒成立,由绝对值三角不等式求得的最小值即可.
【详解】
(1)原不等式等价于
或或,
解得:或,
∴不等式的解集为或.
(2)因为-2在R上恒成立,
而,
所以,解得,
所以实数的取值范围是.
【点睛】
本题主要考查绝对值不等式的解法和不等式恒成立问题,还考查了运算求解的能力,属于中档题.
一、单选题
1.已知集合,,则等于( )
A. B. C. D.
【答案】B
【解析】解不等式确定集合,然后由补集、并集定义求解.
【详解】
由题意或,
∴,
.
故选:B.
【点睛】
本题考查集合的综合运算,以及一元二次不等式的解法,属于基础题型.
2.复数的共轭复数在复平面内所对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【答案】D
【解析】由复数除法运算求出,再写出其共轭复数,得共轭复数对应点的坐标.得结论.
【详解】
,,对应点为,在第四象限.
故选:D.
【点睛】
本题考查复数的除法运算,考查共轭复数的概念,考查复数的几何意义.掌握复数的运算法则是解题关键.
3.设分别是所对边的边长,则直线与的位置关系是
A.平行 B.重合 C.垂直 D.相交但不垂直
【答案】C
【解析】试题分析:由题意,,由正弦定理得,故两直线垂直
【考点】两直线位置关系
4.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是( )
A. B. C. D.
【答案】B
【解析】将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.
【详解】
设乙,丙,丁分别领到x元,y元,z元,记为,则基本事件有,,,,,,,,,,共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为,
故选:B.
【点睛】
本题主要考查了枚举法求古典概型的方法,属于基础题型.
5.设、是两条不同的直线, 、是两个不同的平面,则的一个充分条件是( )
A.且 B.且 C.且 D.且
【答案】B
【解析】由且可得,故选B.
6.等比数列的各项均为正数,且,则( )
A.12 B.10 C.8 D.
【答案】B
【解析】由等比数列的性质求得,再由对数运算法则可得结论.
【详解】
∵数列是等比数列,∴,,
∴.
故选:B.
【点睛】
本题考查等比数列的性质,考查对数的运算法则,掌握等比数列的性质是解题关键.
7.函数(其中是自然对数的底数)的大致图像为( )
A. B. C. D.
【答案】D
【解析】 由题意得,函数点定义域为且,所以定义域关于原点对称,
且,所以函数为奇函数,图象关于原点对称,
故选D.
8.已知,,由程序框图输出的为( )
A.1 B.0 C. D.
【答案】D
【解析】试题分析:,,所以,所以由程序框图输出的为.故选D.
【考点】1、程序框图;2、定积分.
9.博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )
A.P1•P2= B.P1=P2= C.P1+P2= D.P1<P2
【答案】C
【解析】将三辆车的出车可能顺序一一列出,找出符合条件的即可.
【详解】
三辆车的出车顺序可能为:123、132、213、231、312、321
方案一坐车可能:132、213、231,所以,P1=;
方案二坐车可能:312、321,所以,P1=;
所以P1+P2=
故选C.
【点睛】
本题考查了古典概型的概率的求法,常用列举法得到各种情况下基本事件的个数,属于基础题.
10.三棱锥中,侧棱底面,,,,,则该三棱锥的外接球的表面积为( )
A. B. C. D.
【答案】B
【解析】由题,侧棱底面,,,,则根据余弦定理可得 ,的外接圆圆心
三棱锥的外接球的球心到面的距离 则外接球的半径 ,则该三棱锥的外接球的表面积为
点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径 公式是解答的关键.
11.已知斜率为2的直线l过抛物线C:的焦点F,且与抛物线交于A,B两点,若线段AB的中点M的纵坐标为1,则p=( )
A.1 B. C.2 D.4
【答案】C
【解析】设直线l的方程为x=y,与抛物线联立利用韦达定理可得p.
【详解】
由已知得F(,0),设直线l的方程为x=y,并与y2=2px联立得y2﹣py﹣p2=0,
设A(x1,y1),B(x2,y2),AB的中点C(x0,y0),
∴y1+y2=p,
又线段AB的中点M的纵坐标为1,则y0(y1+y2)=,所以p=2,
故选C.
【点睛】
本题主要考查了直线与抛物线的相交弦问题,利用韦达定理是解题的关键,属中档题.
12.已知函数f(x)=,若关于x的方程f(x)=kx-恰有4个不相等的实数根,则实数k的取值范围是( )
A. B.
C. D.
【答案】D
【解析】由已知可将问题转化为:y=f(x)的图象和直线y=kx-有4个交点,作出图象,由图可得:点(1,0)必须在直线y=kx-的下方,即可求得:k>;再求得直线y=kx-和y=ln x相切时,k=;结合图象即可得解.
【详解】
若关于x的方程f(x)=kx-恰有4个不相等的实数根,
则y=f(x)的图象和直线y=kx-有4个交点.作出函数y=f(x)的图象,如图,
故点(1,0)在直线y=kx-的下方.
∴k×1->0,解得k>.
当直线y=kx-和y=ln x相切时,设切点横坐标为m,
则k==,∴m=.
此时,k==,f(x)的图象和直线y=kx-有3个交点,不满足条件,
故所求k的取值范围是,
故选D..
【点睛】
本题主要考查了函数与方程思想及转化能力,还考查了导数的几何意义及计算能力、观察能力,属于难题.
二、填空题
13.已知,则_____。
【答案】
【解析】由已知求,再利用和角正切公式,求得,
【详解】
因为所以cos
因此.
【点睛】
本题考查了同角三角函数基本关系式与和角的正切公式。
14.某商场一年中各月份的收入、支出情况的统计如图所示,下列说法中正确的是______.
①2至3月份的收入的变化率与11至12月份的收入的变化率相同;
②支出最高值与支出最低值的比是6:1;
③第三季度平均收入为50万元;
④利润最高的月份是2月份.
【答案】①②③
【解析】通过图片信息直接观察,计算,找出答案即可.
【详解】
对于①,2至月份的收入的变化率为20,11至12月份的变化率为20,故相同,正确.
对于②,支出最高值是2月份60万元,支出最低值是5月份的10万元,故支出最高值与支出最低值的比是6:1,正确.
对于③,第三季度的7,8,9月每个月的收入分别为40万元,50万元,60万元,故第三季度的平均收入为50万元,正确.
对于④,利润最高的月份是3月份和10月份都是30万元,高于2月份的利润是80﹣60=20万元,错误.
故答案为①②③.
【点睛】
本题考查利用图象信息,分析归纳得出正确结论,属于基础题目.
15.在的二项展开式中,所有项的系数之和为1024,则展开式常数项的值等于_______.
【答案】
【解析】利用展开式所有项系数的和得n=5,再利用二项式展开式的通项公式,求得展开式中的常数项.
【详解】
因为的二项展开式中,所有项的系数之和为4n=1024, n=5,
故的展开式的通项公式为Tr+1=C·35-r,令,解得r=4,可得常数项为T5=C·3=15,故填15.
【点睛】
本题主要考查了二项式定理的应用、二项式系数的性质,二项式展开式的通项公式,属于中档题.
16.如图,在△ABC中,E为边AC上一点,且,P为BE上一点,且满足,则的最小值为______.
【答案】
【解析】试题分析:根据题意有,因为三点共线,所以有,从而有,所以的最小值是.
【考点】向量的运算,基本不等式.
【方法点睛】该题考查的是有关应用基本不等式求最值的问题,属于中档题目,在解题的过程中,关键步骤在于对题中条件的转化,根据三点共线,结合向量的性质可知,从而等价于已知两个正数的整式形式和为定值,求分式形式和的最值的问题,两式乘积,最后应用基本不等式求得结果,最后再加,得出最后的答案.
三、解答题
17.已知x∈R,设,,记函数.
(1)求函数取最小值时x的取值范围;
(2)设△ABC的角A,B,C所对的边分别为a,b,c,若,,求△ABC的面积S的最大值.
【答案】(1);(2)
【解析】(1)先根据向量的数量积的运算,以及二倍角公式和两角和的正弦公式化简得到f(x)=,再根据正弦函数的性质即可求出答案;(2)先求出C的大小,再根据余弦定理和基本不等式,即可求出,根据三角形的面积公式即可求出答案.
【详解】
(1).
令,k∈Z,即时,,取最小值,
所以,所求的取值集合是;
(2)由,得,
因为,所以,所以,.
在中,由余弦定理,
得,即,当且仅当时取等号,
所以的面积,
因此的面积的最大值为.
【点睛】
本题考查了向量的数量积的运算和二倍角公式,两角和的正弦公式,余弦定理和基本不等式,三角形的面积公式,属于中档题.
18.某调查机构对某校学生做了一个是否同意生“二孩”抽样调查,该调查机构从该校随机抽查了100名不同性别的学生,调查统计他们是同意父母生“二孩”还是反对父母生“二孩”,现已得知100人中同意父母生“二孩”占60%,统计情况如下表:
同意
不同意
合计
男生
a
5
女生
40
d
合计
100
(1)求 a,d 的值,根据以上数据,能否有97.5%的把握认为是否同意父母生“二孩”与性别有关?请说明理由;
(2)将上述调查所得的频率视为概率,现在从所有学生中,采用随机抽样的方法抽取4 位学生进行长期跟踪调查,记被抽取的4位学生中持“同意”态度的人数为 X,求 X 的分布列及数学期望.
附:
0.15
0.100
0.050
0.025
0.010
2.072
2.706
3.841
5.024
6.635
【答案】(1), 有97.5%的把握认为是否同意父母生“二孩”与“性别”有关;(2)详见解析.
【解析】(1)根据表格及同意父母生“二孩”占60%可求出, ,根据公式计算结果即可确定有97.5%的把握认为是否同意父母生“二孩”与“性别”有关(2)由题意可知X服从二项分布,利用公式计算概率及期望即可.
【详解】
(1)因为100人中同意父母生“二孩”占60%,
所以,
文(2)由列联表可得
而
所以有97.5%的把握认为是否同意父母生“二孩”与“性别”有关
(2)①由题知持“同意”态度的学生的频率为,
即从学生中任意抽取到一名持“同意”态度的学生的概率为.由于总体容量很大,
故X服从二项分布,
即从而X的分布列为
X
0
1
2
3
4
X的数学期望为
【点睛】
本题主要考查了相关性检验、二项分布,属于中档题.
19.已知四棱锥中,底面为等腰梯形,,,,丄底面.
(1)证明:平面平面;
(2)过的平面交于点,若平面把四棱锥分成体积相等的两部分,求二面角的余弦值.
【答案】(1)见证明;(2)
【解析】(1)先证明等腰梯形中,然后证明,即可得到丄平面,从而可证明平面丄平面;(2)由,可得到,列出式子可求出,然后建立如图的空间坐标系,求出平面的法向量为,平面的法向量为,由可得到答案.
【详解】
(1)证明:在等腰梯形,,
易得
在中,,
则有,故,
又平面,平面,,
即平面,故平面丄平面.
(2)在梯形中,设,
,,
,而,
即,.
以点为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,建立如图的空间坐标系,则,,
设平面的法向量为,
由得,
取,得,,
同理可求得平面的法向量为,
设二面角的平面角为,
则,
所以二面角的余弦值为.
【点睛】
本题考查了两平面垂直的判定,考查了利用空间向量的方法求二面角,考查了棱锥的体积的计算,考查了空间想象能力及计算能力,属于中档题.
20.设点,动圆经过点且和直线相切.记动圆的圆心的轨迹为曲线.
(1)求曲线的方程;
(2)过点的直线与曲线交于、两点,且直线与轴交于点,设,,求证:为定值.
【答案】(1);(2)见解析.
【解析】(1)已知点轨迹是以为焦点,直线为准线的抛物线,由此可得曲线的方程;
(2)设直线方程为,,则,设,由直线方程与抛物线方程联立消元应用韦达定理得,,由,,用横坐标表示出,然后计算,并代入,可得结论.
【详解】
(1)设动圆圆心,由抛物线定义知:点轨迹是以为焦点,直线为准线的抛物线,设其方程为,则,解得.
∴曲线的方程为;
(2)证明:设直线方程为,,则,设,
由得,①,
则,,②,
由,,得
,,
整理得,,
∴,代入②得:
.
【点睛】
本题考查求曲线方程,考查抛物线的定义,考查直线与抛物线相交问题中的定值问题.解题方法是设而不求的思想方法,即设交点坐标,设直线方程,直线方程代入抛物线(或圆锥曲线)方程得一元二次方程,应用韦达定理得,,代入题中其他条件所求式子中化简变形.
21.已知函数
(1)讨论的单调性;
(2)当时,,求的取值范围.
【答案】(1)见解析;(2)
【解析】(1)f′(x)=(x+1)ex-ax-a=(x+1)(ex-a).对a分类讨论,即可得出单调性.
(2)由xex-ax-a+1≥0,可得a(x+1)≤xex+1,当x=-1时,0≤-+1恒成立.当x>-1时,a令g(x)=,利用导数研究函数的单调性极值与最值即可得出.
【详解】
解法一:(1)
①当时,
-1
-
0
+
↘
极小值
↗
所以在上单调递减,在单调递增.
②当时,的根为或.
若,即,
-1
+
0
-
0
+
↗
极大值
↘
极小值
↗
所以在,上单调递增,在上单调递减.
若,即,
在上恒成立,所以在上单调递增,无减区间.
若,即,
-1
+
0
-
0
+
↗
极大值
↘
极小值
↗
所以在,上单调递增,在上单调递减.
综上:
当时,在上单调递减,在上单调递增;
当时,在,上单调递增,在上单调递减;
自时,在上单调递增,无减区间;
当时,在,上单调递增,在上单调递减.
(2)因为,所以.
当时,恒成立.
当时,.
令,,
设,
因为在上恒成立,
即在上单调递增.
又因为,所以在上单调递减,在上单调递增,
则,所以.
综上,的取值范围为.
解法二:(1)同解法一;
(2)令,
所以,
当时,,则在上单调递增,
所以,满足题意.
当时,
令,
因为,即在上单调递增.
又因为,,
所以在上有唯一的解,记为,
-
0
+
↘
极小值
↗
,满足题意.
当时,,不满足题意.
综上,的取值范围为.
【点睛】
本题考查了利用导数研究函数的单调性极值与最值、分类讨论方法、方程与不等式的解法,考查了推理能力与计算能力,属于难题.
22.在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为ρ=2cos θ,直线l的参数方程为 (t为参数,α为直线的倾斜角).
(1)写出直线l的普通方程和曲线C的直角坐标方程;
(2)若直线l与曲线C有唯一的公共点,求角α的大小.
【答案】(1)当 时,直线l方程为x=-1;当 时,直线l方程为
y=(x+1)tanα; x2+y2=2x (2)或.
【解析】(1)对直线l的倾斜角分类讨论,消去参数即可求出其普通方程;由,即可求出曲线C的直角坐标方程;
(2)将直线l的参数方程代入曲线C的直角坐标方程,根据条件Δ=0,即可求解.
【详解】
(1)当时,直线l的普通方程为x=-1;
当时,消去参数得
直线l的普通方程为y=(x+1)tan α.
由ρ=2cos θ,得ρ2=2ρcos θ,
所以x2+y2=2x,即为曲线C的直角坐标方程.
(2)把x=-1+tcos α,y=tsin α代入x2+y2=2x,
整理得t2-4tcos α+3=0.
由Δ=16cos2α-12=0,得cos2α=,
所以cos α=或cos α=,
故直线l的倾斜角α为或.
【点睛】
本题考查参数方程化普通方程,极坐标方程化直角坐标方程,考查直线与曲线的关系,属于中档题.
23.已知函数.
(1)求不等式的解集;
(2)若关于的不等式在上恒成立,求实数的取值范围.
【答案】(1)或; (2).
【解析】(1)利用绝对值的几何意义,将不等式,转化为不等式或或求解.
(2)根据-2在R上恒成立,由绝对值三角不等式求得的最小值即可.
【详解】
(1)原不等式等价于
或或,
解得:或,
∴不等式的解集为或.
(2)因为-2在R上恒成立,
而,
所以,解得,
所以实数的取值范围是.
【点睛】
本题主要考查绝对值不等式的解法和不等式恒成立问题,还考查了运算求解的能力,属于中档题.
相关资料
更多