2020届陕西省榆林市高三下学期3月线上高考模拟测试数学(理)试题(解析版)
展开2020届陕西省榆林市高三下学期3月线上高考模拟测试数学(理)试题
一、单选题
1.设集合,则( )
A. B. C. D.
【答案】C
【解析】解对数不等式求得集合,由此求得两个集合的交集.
【详解】
由,解得,故.依题意,所以.
故选:C
【点睛】
本小题主要考查对数不等式的解法,考查集合交集的概念和运算,属于基础题.
2.在复平面内,复数(,)对应向量(O为坐标原点),设,以射线Ox为始边,OZ为终边旋转的角为,则,法国数学家棣莫弗发现了棣莫弗定理:,,则,由棣莫弗定理可以导出复数乘方公式:,已知,则( )
A. B.4 C. D.16
【答案】D
【解析】根据复数乘方公式:,直接求解即可.
【详解】
,
.
故选:D
【点睛】
本题考查了复数的新定义题目、同时考查了复数模的求法,解题的关键是理解棣莫弗定理,将复数化为棣莫弗定理形式,属于基础题.
3.为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是( )
A.甲的数据分析素养优于乙 B.乙的数据分析素养优于数学建模素养
C.甲的六大素养整体水平优于乙 D.甲的六大素养中数学运算最强
【答案】D
【解析】根据所给的雷达图逐个选项分析即可.
【详解】
对于A,甲的数据分析素养为100分,乙的数据分析素养为80分,
故甲的数据分析素养优于乙,故A正确;
对于B,乙的数据分析素养为80分,数学建模素养为60分,
故乙的数据分析素养优于数学建模素养,故B正确;
对于C,甲的六大素养整体水平平均得分为
,
乙的六大素养整体水平均得分为,故C正确;
对于D,甲的六大素养中数学运算为80分,不是最强的,故D错误;
故选:D
【点睛】
本题考查了样本数据的特征、平均数的计算,考查了学生的数据处理能力,属于基础题.
4.已知,则( )
A. B. C. D.2
【答案】B
【解析】结合求得的值,由此化简所求表达式,求得表达式的值.
【详解】
由,以及,解得.
.
故选:B
【点睛】
本小题主要考查利用同角三角函数的基本关系式化简求值,考查二倍角公式,属于中档题.
5.在中,点D是线段BC上任意一点,,,则( )
A. B.-2 C. D.2
【答案】A
【解析】设,用表示出,求出的值即可得出答案.
【详解】
设
由
,
,
.
故选:A
【点睛】
本题考查了向量加法、减法以及数乘运算,需掌握向量加法的三角形法则以及向量减法的几何意义,属于基础题.
6.设椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,直线BF交直线AC于M,且M为AC的中点,则椭圆E的离心率是( )
A. B. C. D.
【答案】C
【解析】连接,为的中位线,从而,且,进而,由此能求出椭圆的离心率.
【详解】
如图,连接,
椭圆:的右顶点为A,右焦点为F,
B、C为椭圆上关于原点对称的两点,不妨设B在第二象限,
直线BF交直线AC于M,且M为AC的中点
为的中位线,
,且,
,
解得椭圆的离心率.
故选:C
【点睛】
本题考查了椭圆的几何性质,考查了运算求解能力,属于基础题.
7.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:及时,如图:
记为每个序列中最后一列数之和,则为( )
A.147 B.294 C.882 D.1764
【答案】A
【解析】根据题目所给的步骤进行计算,由此求得的值.
【详解】
依题意列表如下:
| 上列乘 | 上列乘 | 上列乘 |
6 | 30 | 60 | |
3 | 15 | 30 | |
2 | 10 | 20 | |
15 | |||
6 | 12 | ||
1 | 5 | 10 |
所以.
故选:A
【点睛】
本小题主要考查合情推理,考查中国古代数学文化,属于基础题.
8.已知函数为奇函数,则( )
A. B.1 C.2 D.3
【答案】B
【解析】根据整体的奇偶性和部分的奇偶性,判断出的值.
【详解】
依题意是奇函数.而为奇函数,为偶函数,所以为偶函数,故,也即,化简得,所以.
故选:B
【点睛】
本小题主要考查根据函数的奇偶性求参数值,属于基础题.
9.已知正四面体的内切球体积为v,外接球的体积为V,则( )
A.4 B.8 C.9 D.27
【答案】D
【解析】设正四面体的棱长为,取的中点为,连接,作正四面体的高为,首先求出正四面体的体积,再利用等体法求出内切球的半径,在中,根据勾股定理求出外接球的半径,利用球的体积公式即可求解.
【详解】
设正四面体的棱长为,取的中点为,连接,
作正四面体的高为,
则,
,
,
设内切球的半径为,内切球的球心为,
则,
解得:;
设外接球的半径为,外接球的球心为,
则或,,
在中,由勾股定理得:
,
,解得,
,
故选:D
【点睛】
本题主要考查了多面体的内切球、外接球问题,考查了椎体的体积公式以及球的体积公式,需熟记几何体的体积公式,属于基础题.
10.要得到函数的导函数的图像,只需将的图像( )
A.向右平移个单位长度,再把各点的纵坐标伸长到原来的3倍
B.向右平移个单位长度,再把各点的纵坐标缩短到原来的倍
C.向左平移个单位长度,再把各点的纵坐标缩短到原来的倍
D.向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍
【答案】D
【解析】先求得,再根据三角函数图像变换的知识,选出正确选项.
【详解】
依题意,所以由向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍得到的图像.
故选:D
【点睛】
本小题主要考查复合函数导数的计算,考查诱导公式,考查三角函数图像变换,属于基础题.
11.已知平面平面,且是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为( )
A. B.16 C. D.
【答案】C
【解析】根据与平面所成的角相等,判断出,建立平面直角坐标系,求得点的轨迹方程,由此求得点的轨迹长度.
【详解】
由于平面平面,且交线为,,所以平面,平面.所以和分别是直线与平面所成的角,所以,所以,即,所以.以为原点建立平面直角坐标系如下图所示,则,,设(点在第一象限内),由得,即,化简得,由于点在第一象限内,所以点的轨迹是以为圆心,半径为的圆在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以点的轨迹长度为.
故选:C
【点睛】
本小题主要考查线面角的概念和运用,考查动点轨迹方程的求法,考查空间想象能力和逻辑推理能力,考查数形结合的数学思想方法,属于难题.
12.已知与函数和都相切,则不等式组所确定的平面区域在内的面积为( )
A. B. C. D.
【答案】B
【解析】根据直线与和都相切,求得的值,由此画出不等式组所表示的平面区域以及圆,由此求得正确选项.
【详解】
.设直线与相切于点,斜率为,所以切线方程为,化简得①.令,解得,,所以切线方程为,化简得②.由①②对比系数得,化简得③.构造函数,,所以在上递减,在上递增,所以在处取得极小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切线方程为.即.不等式组即,画出其对应的区域如下图所示.圆可化为,圆心为.而方程组的解也是.画出图像如下图所示,不等式组所确定的平面区域在内的部分如下图阴影部分所示.直线的斜率为,直线的斜率为.所以,所以,而圆的半径为,所以阴影部分的面积是.
故选:B
【点睛】
本小题主要考查根据公共切线求参数,考查不等式组表示区域的画法,考查圆的方程,考查两条直线夹角的计算,考查扇形面积公式,考查数形结合的数学思想方法,考查分析思考与解决问题的能力,属于难题.
二、填空题
13.设为互不相等的正实数,随机变量和的分布列如下表,若记,分别为的方差,则_____.(填>,<,=)
【答案】>
【解析】根据方差计算公式,计算出的表达式,由此利用差比较法,比较出两者的大小关系.
【详解】
,故
.
,
.
要比较的大小,只需比较与,两者作差并化简得
①,
由于为互不相等的正实数,故,也即
,也即.
故答案为:
【点睛】
本小题主要考查随机变量期望和方差的计算,考查差比较法比较大小,考查运算求解能力,属于难题.
14.的三个内角A,B,C所对应的边分别为a,b,c,已知,则________.
【答案】
【解析】利用正弦定理边化角可得,从而可得,进而求解.
【详解】
由,
由正弦定理可得,
即,
整理可得,
又因为,所以,
因为,
所以,
故答案为:
【点睛】
本题主要考查了正弦定理解三角形、两角和的正弦公式,属于基础题.
15.若双曲线C:(,)的顶点到渐近线的距离为,则的最小值________.
【答案】
【解析】根据双曲线的方程求出其中一条渐近线,顶点,再利用点到直线的距离公式可得,由,利用基本不等式即可求解.
【详解】
由双曲线C:(,,
可得一条渐近线,一个顶点,
所以,解得,
则,
当且仅当时,取等号,
所以的最小值为.
故答案为:
【点睛】
本题考查了双曲线的几何性质、点到直线的距离公式、基本不等式求最值,注意验证等号成立的条件,属于基础题.
16.若奇函数满足,为R上的单调函数,对任意实数都有,当时,,则________.
【答案】
【解析】根据可得函数以为周期的函数,令,可求,从而可得,代入解析式即可求解.
【详解】
令,则,
由,则,
所以,解得,
所以,
由时,,
所以时,;
由,所以,
所以函数以为周期的函数,
,
又函数为奇函数,
所以.
故答案为:
【点睛】
本题主要考查了换元法求函数解析式、函数的奇偶性、周期性的应用,属于中档题.
三、解答题
17.已知数列为公差为d的等差数列,,,且,,依次成等比数列,.
(1)求数列的前n项和;
(2)若,求数列的前n项和为.
【答案】(1)(2)
【解析】(1)利用等差数列的通项公式以及等比中项求出公差,从而求出,再利用等比数列的前项和公式即可求解.
(2)由(1)求出,再利用裂项求和法即可求解.
【详解】
(1),且,,依次成等比数列,,
即:,,,
,,
;
(2),
.
【点睛】
本题考查了等差数列、等比数列的通项公式、等比数列的前项和公式、裂项求和法,需熟记公式,属于基础题.
18.在四棱锥中,底面是平行四边形,底面.
(1)证明:;
(2)求二面角的正弦值.
【答案】(1)见解析(2)
【解析】(1)利用正弦定理求得,由此得到,结合证得平面,由此证得.
(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值,再转化为正弦值.
【详解】
(1)在中,由正弦定理可得:,
,
底面,
平面,
;
(2)以为坐标原点建立如图所示的空间直角坐标系,,
设平面的法向量为,由可得:,令,则,
设平面的法向量为,由可得:,令,则,
设二面角的平面角为,由图可知为钝角,
则,
,故二面角的正弦值为.
【点睛】
本小题主要考查线线垂直的证明,考查空间向量法求二面角,考查空间想象能力和逻辑推理能力,属于中档题.
19.已知动圆过定点,且与直线相切,动圆圆心的轨迹为,过作斜率为的直线与交于两点,过分别作的切线,两切线的交点为,直线与交于两点.
(1)证明:点始终在直线上且;
(2)求四边形的面积的最小值.
【答案】(1)见解析(2)最小值为32.
【解析】(1)根据抛物线的定义,判断出的轨迹为抛物线,并由此求得轨迹的方程.设出两点的坐标,利用导数求得切线的方程,由此求得点的坐标.写出直线的方程,联立直线的方程和曲线的方程,根据韦达定理求得点的坐标,并由此判断出始终在直线上,且.
(2)设直线的倾斜角为,求得的表达式,求得的表达式,由此求得四边形的面积的表达式进而求得四边形的面积的最小值.
【详解】
(1)∵动圆过定点,且与直线相切,∴动圆圆心到定点和定直线的距离相等,∴动圆圆心的轨迹是以为焦点的抛物线,∴轨迹的方程为:,
设,∴直线的方程为:,即:①,同理,直线的方程为:②,
由①②可得:,
直线方程为:,联立可得:,
,∴点始终在直线上且;
(2)设直线的倾斜角为,由(1)可得:,
,
∴四边形的面积为:,当且仅当或,即时取等号,∴四边形的面积的最小值为32.
【点睛】
本小题主要考查动点轨迹方程的求法,考查直线和抛物线的位置关系,考查抛物线中四边形面积的最值的计算,考查运算求解能力,属于中档题.
20.2019年12月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病例,均诊断为病毒性肺炎/肺部感染,后被命名为新型冠状病毒肺炎(CoronaVirusDisease2019,COVID—19),简称“新冠肺炎”.下图是2020年1月15日至1月24日累计确诊人数随时间变化的散点图.
为了预测在未釆取强力措施下,后期的累计确诊人数,建立了累计确诊人数y与时间变量t的两个回归模型,根据1月15日至1月24日的数据(时间变量t的值依次1,2,…,10)建立模型和.
(1)根据散点图判断,与哪一个适宜作为累计确诊人数y与时间变量t的回归方程类型?(给出判断即可,不必说明理由)
(2根据(1)的判断结果及附表中数据,建立y关于x的回归方程;
(3)以下是1月25日至1月29日累计确诊人数的真实数据,根据(2)的结果回答下列问题:
时间 | 1月25日 | 1月26日 | 1月27日 | 1月28日 | 1月29日 |
累计确诊人数的真实数据 | 1975 | 2744 | 4515 | 5974 | 7111 |
(ⅰ)当1月25日至1月27日这3天的误差(模型预测数据与真实数据差值的绝对值与真实数据的比值)都小于0.1则认为模型可靠,请判断(2)的回归方程是否可靠?
(ⅱ)2020年1月24日在人民政府的强力领导下,全国人民共同采取了强力的预防“新冠肺炎”的措施,若采取措施5天后,真实数据明显低于预测数据,则认为防护措施有效,请判断预防措施是否有效?
附:对于一组数据(,,……,,其回归直线的斜率和截距的最小二乘估计分别为,.
参考数据:其中,.
5.5 | 390 | 19 | 385 | 7640 | 31525 | 154700 | 100 | 150 | 225 | 338 | 507 |
【答案】(1)适宜(2)(3)(ⅰ)回归方程可靠(ⅱ)防护措施有效
【解析】(1)根据散点图即可判断出结果.
(2)设,则,求出,再由回归方程过样本中心点求出,即可求出回归方程.
(3)(ⅰ)利用表中数据,计算出误差即可判断回归方程可靠;(ⅱ)当时,,与真实值作比较即可判断有效.
【详解】
(1)根据散点图可知:
适宜作为累计确诊人数与时间变量的回归方程类型;
(2)设,则,
,
,
;
(3)(ⅰ)时,,,
当时,,,
当时,,,
所以(2)的回归方程可靠:
(ⅱ)当时,,
10150远大于7111,所以防护措施有效.
【点睛】
本题考查了函数模型的应用,在求非线性回归方程时,现将非线性的化为线性的,考查了误差的计算以及用函数模型分析数据,属于基础题.
21.已知函数,其中.
(1)讨论函数的零点个数;
(2)求证:.
【答案】(1)时,有一个零点;当且时,有两个零点;(2)见解析
【解析】(1)利用的导函数,求得的最大值的表达式,对进行分类讨论,由此判断出的零点的个数.
(2)由,得到和,构造函数,利用导数证得,即有,从而证得,即.
【详解】
(1),
∴当时,,当时,在上递增,在上递减,.
令在上递减,在上递增,,当且仅当时取等号.
①时,有一个零点;
②时,,此时有两个零点;
③时,,令在上递增,,此时有两个零点;
综上:时,有一个零点;当且时,有两个零点;
(2)由(1)可知:,
令在上递增,.
【点睛】
本小题主要考查利用导数研究函数的零点,考查利用导数证明不等式,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于中档题.
22.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知:,:,:.
(1)求与的极坐标方程
(2)若与交于点A,与交于点B,,求的最大值.
【答案】(1)的极坐标方程为;的极坐标方程为:(2)
【解析】(1)根据,代入即可转化.
(2)由:,可得,代入与的极坐标方程求出,从而可得,再利用二倍角公式、辅助角公式,借助三角函数的性质即可求解.
【详解】
(1):,,
的极坐标方程为
:,,
的极坐标方程为:,
(2):,则(为锐角),
,,
,当时取等号.
【点睛】
本题考查了极坐标与直角坐标的互化、二倍角公式、辅助角公式以及三角函数的性质,属于基础题.
23.已知函数,设的最小值为m.
(1)求m的值;
(2)是否存在实数a,b,使得,?并说明理由.
【答案】(1)(2)不存在;详见解析
【解析】(1)将函数去绝对值化为分段函数的形式,从而可求得函数的最小值,进而可得m.
(2)由,利用基本不等式即可求出.
【详解】
(1)
;
(2),
若,同号,,不成立;
或,异号,,不成立;
故不存在实数,,使得,.
【点睛】
本题考查了分段函数的最值、基本不等式的应用,属于基础题.