所属成套资源:2025年中考数学一轮复习分层精练 (2份,原卷版+解析版)
2025年中考数学一轮复习分层精练专题14 构建函数关系解决实际问题(2份,原卷版+解析版)
展开
这是一份2025年中考数学一轮复习分层精练专题14 构建函数关系解决实际问题(2份,原卷版+解析版),文件包含2025年中考数学一轮复习分层精练专题14构建函数关系解决实际问题原卷版doc、2025年中考数学一轮复习分层精练专题14构建函数关系解决实际问题解析版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
1.(2022•黔西南州)如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=﹣x2+x+,则铅球推出的水平距离OA的长是 m.
2.(2022•南通)根据物理学规律,如果不考虑空气阻力,以40m/s的速度将小球沿与地面成30°角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是h=﹣5t2+20t,当飞行时间t为 s时,小球达到最高点.
3.(2022•襄阳)在北京冬奥会自由式滑雪大跳台比赛中,我国选手谷爱凌的精彩表现让人叹为观止,已知谷爱凌从2m高的跳台滑出后的运动路线是一条抛物线,设她与跳台边缘的水平距离为xm,与跳台底部所在水平面的竖直高度为ym,y与x的函数关系式为y=x2+x+2(0≤x≤20.5),当她与跳台边缘的水平距离为 m时,竖直高度达到最大值.
4.(2022•连云港)如图,一位篮球运动员投篮,球沿抛物线y=﹣0.2x2+x+2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m,则他距篮筐中心的水平距离OH是 m.
5.(2022•内蒙古)某商店决定购进A、B两种北京冬奥会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.
(1)求购进A、B两种纪念品的单价;
(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且购进B种纪念品数量不少于20件,那么该商店共有几种进货方案?
(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?求出最大利润.
6.(2022•广西)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.
(1)求y与x的函数解析式,并写出自变量x的取值范围;
(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.
7.(2022•河南)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.
(1)求抛物线的表达式.
(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.
8.(2022•朝阳)某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.
(1)求y与x之间的函数关系式.
(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?
(3)设该商店销售这种消毒用品每天获利w(元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?
9.(2022•黔西南州)某乡镇新打造的“田园风光”景区今年计划改造一片绿化地,种植A、B两种花卉,已知3盆A种花卉和4盆B种花卉的种植费用为330元,4盆A种花卉和3盆B种花卉的种植费用为300元.
(1)每盆A种花卉和每盆B种花卉的种植费用各是多少元?
(2)若该景区今年计划种植A、B两种花卉共400盆,相关资料表明:A、B两种花卉的成活率分别为70%和90%,景区明年要将枯死的花卉补上相同的新花卉,但这两种花卉在明年共补的盆数不多于80盆,应如何安排这两种花卉的种植数量,才能使今年该项的种植费用最低?并求出最低费用.
10.(2022•鄂尔多斯)某超市采购了两批同样的冰墩墩挂件,第一批花了6600元,第二批花了8000元,第一批每个挂件的进价是第二批的1.1倍,且第二批比第一批多购进50个.
(1)求第二批每个挂件的进价;
(2)两批挂件售完后,该超市以第二批每个挂件的进价又采购一批同样的挂件,经市场调查发现,当售价为每个60元时,每周能卖出40个,若每降价1元,每周多卖10个,由于货源紧缺,每周最多能卖90个,求每个挂件售价定为多少元时,每周可获得最大利润,最大利润是多少?
11.(2022•深圳)某学校打算购买甲乙两种不同类型的笔记本.已知甲种类型的笔记本的单价比乙种类型的要便宜1元,且用110元购买的甲种类型的数量与用120元购买的乙种类型的数量一样.
(1)求甲乙两种类型笔记本的单价.
(2)该学校打算购买甲乙两种类型笔记本共100件,且购买的乙的数量不超过甲的3倍,则购买的最低费用是多少.
12.(2022•济宁)某运输公司安排甲、乙两种货车24辆恰好一次性将328吨的物资运往A,B两地,两种货车载重量及到A,B两地的运输成本如表:
(1)求甲、乙两种货车各用了多少辆;
(2)如果前往A地的甲、乙两种货车共12辆,所运物资不少于160吨,其余货车将剩余物资运往B地.设甲、乙两种货车到A,B两地的总运输成本为w元,前往A地的甲种货车为t辆.
①写出w与t之间的函数解析式;
②当t为何值时,w最小?最小值是多少?
13.(2022•梧州)梧州市地处亚热带,盛产龙眼.新鲜龙眼的保质期短,若加工成龙眼干(又叫带壳圆肉)则有利于较长时间保存.已知3kg的新鲜龙眼在无损耗的情况下可以加工成1kg的龙眼干.
(1)若新鲜龙眼售价为12元/kg.在无损耗的情况下加工成龙眼干,使龙眼干的销售收益不低于新鲜龙眼的销售收益,则龙眼干的售价应不低于多少元/kg?
(2)在实践中,小苏发现当地在加工龙眼干的过程中新鲜龙眼有6%的损耗,为确保果农的利益,龙眼干的销售收益应不低于新鲜龙眼的销售收益,此时龙眼干的定价取最低整数价格.
市场调查还发现,新鲜龙眼以12元/kg最多能卖出100kg,超出部分平均售价是5元/kg,可售完.果农们都以这种方式出售新鲜龙眼.
设某果农有akg新鲜龙眼,他全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差为w元,请写出w与a的函数关系式.
14.(2022•襄阳)为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.
(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;
(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;
(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.
货车类型
载重量(吨/辆)
运往A地的成本(元/辆)
运往B地的成本(元/辆)
甲种
16
1200
900
乙种
12
1000
750
相关试卷
这是一份中考数学一轮复习考点题型归纳与分层练习专题14 反比例函数(2份,原卷版+解析版),文件包含中考数学一轮复习考点题型归纳与分层练习专题14反比例函数原卷版doc、中考数学一轮复习考点题型归纳与分层练习专题14反比例函数解析版doc等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
这是一份中考数学一轮复习满分突破(全国通用)专题14二次函数(原卷版+解析),共87页。
这是一份中考数学一轮复习考点题型归纳与分层训练专题14 反比例函数(2份打包,原卷版+解析版),文件包含中考数学一轮复习考点题型归纳与分层训练专题14反比例函数原卷版doc、中考数学一轮复习考点题型归纳与分层训练专题14反比例函数含解析doc等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。