2024-2025学年上海市闵行区高三上册10月月考数学检测试卷
展开
这是一份2024-2025学年上海市闵行区高三上册10月月考数学检测试卷,共4页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。
1. 已知集合,,则__________
2. 已知复数满足:(为虚数单位),则_________
3. 已知向量,,若,则_________
4. 设等差数列的前项和为,若,则等于______________
5. 已知圆的方程是,则圆心的坐标是________.
6. 已知,则___________.
7. 展开式中,各项系数中的最大值为______.
8. 记为数列的前项和,已知,则数列的通项公式______________
9. 已知正实数、满足,则的最小值为_______.
10. 设圆锥底面圆周上两点、间的距离为,圆锥顶点到直线的距离为,和圆锥的轴的距离为,则该圆锥的侧面积为___________.
11. 设,若存在唯一的m使得关于x的不等式组有解,则a的取值范围是______.
12. 对任意数集,满足表达式为且值域为的函数个数为.记所有可能的的值组成集合,则集合中元素之和为__________.
二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)
13. “”是“”的( )
A. 充分非必要条件B. 必要非充分条件
C. 充要条件D. 既非充分也非必要条件
14. 函数图象的大致形状是( )
A. B.
C. D.
15. 如图所示,在正方体中,点为线段上的动点,则下列直线中,始终与直线异面的是( )
A. B. C. D.
16. 已知数列的各项均为正数,其前n项和为,满足,给出下列四个结论:
①的第2项小于3;②为等比数列;③为递减数列;④中存在小于的项
其中正确结论的个数是( )
A. 1B. 2C. 3D. 4
三、解答题(本大题共有5题,满分78分)
17. 如图,正四棱柱的底面边长为1,高为2,相交于点O.
(1)证明:直线与平面平行;
(2)求三棱锥的体积.
18.
(1)若将函数图像向下移后,图像经过,求实数a,m的值.
(2)若且,求解不等式.
19. 为研究某种农产品价格变化的规律,收集得到了该农产品连续40天的价格变化数据,如下表所示.在描述价格变化时,用“+”表示“上涨”,即当天价格比前一天价格高;用“-”表示“下跌”,即当天价格比前一天价格低;用“0”表示“不变”,即当天价格与前一天价格相同.
用频率估计概率.
(1)试估计该农产品价格“上涨”的概率;
(2)假设该农产品每天的价格变化是相互独立的.在未来的日子里任取4天,试估计该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概率;
(3)假设该农产品每天的价格变化只受前一天价格变化的影响.判断第41天该农产品价格“上涨”“下跌”和“不变”的概率估计值哪个最大.(结论不要求证明)
20. 已知椭圆的离心率为,点A−2,0在上.
(1)求椭圆的方程;
(2)椭圆上、下顶点分别为,,点在上(异于椭圆的顶点),直线与轴相交于点,点E0,2,若的面积是面积的两倍,求点的坐标;
(3)过点−2,3的直线交于,两点,直线,与轴的交点分别为,,证明:线段的中点为定点.
21. 已知函数和,.
(1)求在点处切线方程;
(2)若函数和有相同的最小值,
①求值;
②证明:存在直线,其与两条曲线和共有三个不同交点,并且从左到右的三个交点的横坐标成等差数列.
时段
价格变化
第1天到第20天
-
+
+
0
-
-
-
+
+
0
+
0
-
-
+
-
+
0
0
+
第21天到第40天
0
+
+
0
-
-
-
+
+
0
+
0
+
-
-
-
+
0
-
+
相关试卷
这是一份2024-2025学年上海市闵行区高三上册期中联考数学检测试卷,共3页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年上海市闵行区高三上册期中联考数学检测试卷(含解析),共21页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年上海市闵行区高三上册期中联考数学检测试卷(附解析),共18页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。