河北省兴隆县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省兴隆县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共21页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 下列手机手势解锁图案中,是轴对称图形是( )
A. B.
C. D.
2. 下列运算正确的是( )
A. B.
C. D.
3. 冠状病毒是一个大型病毒家族,借助电子显微镜,我们可以看到这些病毒直径约为125纳米(1纳米米),125纳米用科学记数法表示等于( )
A. 米B. 米C. 米D. 米
4. 下列各式变形中,是因式分解的是( )
A. B.
C. D.
5. 下列各式中,正确的是( )
A.
B.
C.
D.
6. 若,则2n-3m的值是( )
A. -1B. 1C. 2D. 3
7. 如果的乘积中不含x的一次项,那么a、b满足( )
A. B.
C. D. ,
8. 若关于x的分式方程-2=无解,则m的值为( )
A. 0B. 2C. 0或2D. 无法确定
9. 嘉淇在折幸运星时将一张长方形纸条折成了如图所示的样子(内部有一个正五边形),则∠1的度数为( )
A. 36°B. 54°C. 60°D. 72°
10. △ABC中,∠C=90°,∠A的平分线交BC于点D,如果AB=8,CD=3,则△ABD的面积为( )
A. 24B. 12C. 8D. 6
11. 如图,在△ABD中,∠D=20°,CE垂直平分AD,交BD于点C,交AD于点E,连接AC,若AB=AC,则∠BAD的度数是( )
A. 100°B. 110°C. 120°D. 150°
12. 如图,△ABC≌△ADE,且AE∥BD,∠BAD=94°,则∠BAC的度数的值为( )
A. 84°B. 60°C. 48°D. 43°
13. 一个三角形两边长分别为4和6,且第三边长为整数,这样的三角形的周长最小值是( )
A. 20B. 16C. 13D. 12
14. 点在的角平分线上,点到边的距离等于,点是边上的任意一点,则下列选项正确的是( )
A. B. C. D.
15. 下列多项式不能用公式法进行因式分解的是( )
A. 1 a2B.
C. x2 2xy y2D. 4x2 4x 1
16. 如图,在四边形ABCD中,∠C=40°,∠B=∠D=90°,E,F分别是BC,DC上的点,当ΔAEF的周长最小时,∠EAF的度数为( )
A. 100°B. 90°C. 70°D. 80°
二.填空题(本大题共3题,总计 12分)
17. 计算:________.
18. 如图,在△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边BC上E处,折痕为CD,则∠EDB=_____.
19. 如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为______.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. 分解因式:
(1)4m3n﹣mn3
(2)(x﹣1)(x﹣3)+1.
21. 分解因式:
(1)
(2)
22. 如图,在下方单位长度为1的方格纸中画有一个△ABC.
(1)画出△ABC关于y轴对称△A′B′C′;
(2)求△ABC的面积.
23. 如图,在△ABC中,射线AM平分∠BAC.
(1)尺规作图(不写作法,保留作图痕迹)作BC的中垂线,与AM相交于点G,连接BG、CG;
(2)在(1)条件下,∠BAC和∠BGC有何数量关系?并证明你的结论.
24. 我阅读:类比于两数相除可以用竖式运算,多项式除以多项式也可以用竖式运算,其步骤是:
(1)把被除式和除式按同一字母的降幂排列(若有缺项用零补齐).
(2)用竖式进行运算.
(3)当余式的次数低于除式的次数时,运算终止,得到商式和余式.我会做:请把下面解答部分中的填空内容补充完整.求的商式和余式.
解:
答:商式是,余式是( )
我挑战:已知能被整除,请直接写出a、b的值.
25. 在今年新冠肺炎防疫工作中,某公司购买了、两种不同型号口罩,已知型口罩的单价比型口罩的单价多1.5元,且用8000元购买型口罩的数量与用5000元购买型口罩的数量相同.
(1)、两种型号口罩的单价各是多少元?
(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买型口罩数量是型口罩数量的2倍,若总费用不超过3800元,则增加购买型口罩的数量最多是多少个?
26. 如图1,在长方形中,,点P从点B出发,以的速度沿向点C运动(点P运动到点C处时停止运动),设点P的运动时间为.
(1)_____________.(用含t的式子表示)
(2)当t何值时,△ABP≌△DCP?
(3)如图2,当点P从点B开始运动,同时,点Q从点C出发,以的速度沿向点D运动(点Q运动到点D处时停止运动,两点中有一点停止运动后另一点也停止运动),是否存在这样的值使得与全等?若存在,请求出的值;若不存在,请说明理由.
兴隆县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
【解析】:A.不是轴对称图形,故此选项错误;
B.不是轴对称图形,故此选项错误;
C.是轴对称图形,故此选项正确;
D.不是轴对称图形,故此选项错误.
故选:C.
2.【答案】:B
【解析】:解:利用同底数幂相乘公式可知:
A.,原运算不正确,不符合题意;
利用积的乘方公式可知:
B. ,运算正确,符合题意;
C. ,和不是同类项不能直接合并,运算不正确,不符合题意;
利用同底数幂的除法公式可知:
D. ,原运算不正确,不符合题意;
故选:B.
3.【答案】:A
【解析】:解:125纳米=125×10-9米=米,
故选:A.
4.【答案】:D
【解析】:解:A、等式的右边不是整式的积的形式,故A错误;
B、等式右边分母含有字母不是因式分解,故B错误;
C、等式的右边不是整式的积的形式,故C错误;
D、是因式分解,故D正确;
故选D.
5.【答案】:B
【解析】:解:A、 ,错误;
B、 ,正确;
C、 ,错误;
D、 ,错误.
故选:B.
6.【答案】:B
【解析】:解:∵,
∴,
∴,
∴.
故选:B
7.【答案】:C
【解析】:解:∵
∴当时,原式不含x的一次项
故答案为C.
8.【答案】:C
【解析】:解:方程两边都乘以(x-3)得:
整理得:(m-2)x=2m-6,
由分式方程无解,
一种情况是未知数系数为0得:m-2=0,m=2,
一种情况是方程有增根得:x−3=0,即x=3,
把x=3代入整式方程得:m=0,
故选:C.
9.【答案】:D
【解析】:∵折的图形为正五边形,
∴∠2= =108°,
又∵长方形纸片对边平行,
∴∠1+∠2=180°,
∠1=180°-∠2=180°-108°=72°
故选D.
10.【答案】:B
【解析】:作DE⊥AB于E,
∵AD平分∠BAC,DE⊥AB,DC⊥AC,
∴DE=CD=3,
∴△ABD的面积为×3×8=12,
故选:B.
11.【答案】:C
【解析】:解:∵CE垂直平分AD,
∴,
∴,
∴,
∵AB=AC,
∴,
∴,
∴,
故选:C.
12.【答案】:D
【解析】:∵△ABC≌△ADE,∠BAD=94°,
∴AB=AD,∠BAC=∠DAE,
∴∠ABD=∠ADB=×(180°﹣94°)=43°,
∵AE//BD,
∴∠DAE=∠ADB=43°,
∴∠BAC=∠DAE=43°.
故选:D.
13.【答案】:C
【解析】:解:设三角形的第三边为x,
∵三角形的两边长分别为4和6,
∴2<x<10,
∵第三边为整数,
∴第三边x的最小值为3,
∴三角形周长的最小值为:3+4+6=13.
故选:C
14.【答案】:B
【解析】:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,
∴点P到OB的距离为5,
∵点Q是OB边上的任意一点,
∴PQ≥5.
故选:B.
15.【答案】:B
【解析】:解:, 故A不符合题意;
不能用公式法分解因式,故B符合题意;
x2 2xy y2, 故C不符合题意;
, 故D不符合题意;
故选:B
16.【答案】:A
【解析】:解:作点A关于直线BC和直线CD的对称点G和H,连接GH,交BC、CD于点E、F,连接AE、AF,则此时△AEF的周长最小,
∵四边形的内角和为,
∴,
即①,
由作图可知:,,
∵的内角和为,
∴②,
方程①和②联立方程组,
解得.
故选:A.
二. 填空题
17.【答案】: 4
【解析】:解:原式=
故答案为:4
18.【答案】: 10°
【解析】:解:∵∠ACB=90°,∠A=50°,
∴∠B=90°﹣∠A=90°﹣50°=40°,
∵△CDE是△CDA翻折得到,
∴∠CED=∠A=50°,
在△BDE中,∠CED=∠B+∠EDB,
即50°=40°+∠EDB,
∴∠EDB=10°.
故答案为:10°
19.【答案】:
【解析】:解:如图作AF⊥x轴于F,CE⊥x轴于E.
∵四边形ABCO是正方形,
∴OA=OC,∠AOC=90°,
∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,
∴∠COE=∠OAF,
在△COE和△OAF中,
,
∴△COE≌△OAF,
∴CE=OF,OE=AF,
∵A(1,),
∴CE=OF=1,OE=AF=,
∴点C坐标,
故答案为:.
三.解答题
20【答案】:
(1)mn(2m+n)(2m﹣n)
(2)(x﹣2)2
【解析】:
【小问1详解】
解:原式=mn(4m2﹣n2)=mn(2m+n)(2m﹣n);
【小问2详解】
解:原式=x2﹣4x+3+1=x2﹣4x+4=(x﹣2)2.
【画龙点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
21【答案】:
(1)
(2)
【解析】:
【小问1详解】
解:原式
.
【小问2详解】
解:原式
.
22【答案】:
(1)见解析;(2)
【解析】:
(1)解:△ABC关于y轴对称的如下图所示 :
(2)
.
23【答案】:
(1)详见解析;(2)∠BAC+∠BGC=180°,证明详见解析.
【解析】:
解:(1)线段BC的中垂线EG如图所示:
(2)结论:∠BAC+∠BGC=180°.
理由:在AB上截取AD=AC,连接DG.
∵AM平分∠BAC,
∴∠DAG=∠CAG,
在△DAG和△CAG中
∵
∴△DAG≌△CAG(SAS),
∴∠ADG=∠ACG,DG=CG,
∵G在BC的垂直平分线上,
∴BG=CG,
∴BG=DG,
∴∠ABG=∠BDG,
∵∠BDG+∠ADG=180°,
∴∠ABG+∠ACG=180°,
∵∠ABG+∠BGC+∠ACG+∠BAC=360°,
∴∠BAC+∠BGC=180°.
24【答案】:
我会做:
;,
我挑战:
【解析】:
解:我会做:补全如下,
答:商式是,余式是()
故答案为:;
我挑战:能被整除,则余数为0,根据题意列竖式运算即可,
解得
【画龙点睛】本题考查了多项式除以多项式,掌握多项式的乘法是解题的关键.
25【答案】:
(1)型口罩单价为4元/个,型口罩单价为2.5元/个;
(2)增加购买型口罩的数量最多是422个
【解析】:
(1)设型口罩单价为元/个,则型口罩单价为元/个,
根据题意,得:,解方程,得,
经检验:是原方程的根,且符合题意,∴(元),
答:型口罩单价为4元/个,型口罩单价为2.5元/个;
(2)设增加购买型口罩的数量是个,则增加购买型口罩数量是2个,
根据题意,得:,
解不等式,得:,
∵为正整数,∴正整数的最大值为422,
答:增加购买型口罩的数量最多是422个.
【画龙点睛】本题考查了分式方程和不等式的应用,属于常考题型,正确理解题意、找准相等与不等关系是解题的关键.
26【答案】:
(1);(2);(3)存在,或,理由见解析.
【解析】:
解:(1)由题意得,,
∴PC=BC-BP=10-2t,
故答案为:;
(2)若△ABP≌△DCP
则
∴2t=10-2t
即
当时,△ABP≌△DCP;
(3)存在,理由如下:
当时,△ABP≅△PCQ
∴2t=4
∴v=2;
当时,△ABP≅△QCP
∴2t=5
∴2.5v=6
∴v=2.4
综上所述,当或时,与全等.
相关试卷
这是一份河北省蔚县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共20页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省献县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共25页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省青县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共26页。试卷主要包含了选择题等内容,欢迎下载使用。