河北省尚义县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省尚义县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共22页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 下列图形中,是轴对称图形的是( )
A. B. C. D.
2. 若分式x-1x值为零, 则( ).
A. B. C. D.
3. 某类新型冠状病毒的直径约为0.000000125米,将0.000000125米用科学记数法表示为( )
A. 米B. 米
C. 米D. 米
4. 将多项式进行因式分解的结果是( )
A. B. C. D.
5. 一个正多边形,它的一个内角恰好是一个外角的5倍,则这个正多边形的边数是( )
A. 十二B. 十一C. 十D. 九
6. 如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,连接EN,作图痕迹中,△ODM≌△CEN根据的是( )
A. SASB. SSSC. ASAD. AAS
7. 如图,小明书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么小明画图的依据是( )
A. SSSB. SASC. AASD. ASA
8. 计算a﹣2b2•(a2b﹣2)﹣2正确的结果是( )
A. B. C. a6b6D.
9. 如图,在△ABC中,∠B=90°,∠A=30°,AC=a,AB=m,以点C为圆心,CB长为半径画弧交AC于点D,再以点A为圆心,AD长为半径画弧交AB于点E,则BE的长为( )
A. m﹣B. a﹣mC. 2a﹣mD. m﹣a
10. 如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C平分∠ACB.若∠BA'C=110°,则∠1+∠2的度数为( )
A. 80°B. 90°C. 100°D. 110°
11. 如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( )
A. 60°B. 50°C. 40°D. 30°
12. 如图,在Rt△ACD和Rt△BEC中,若AD=BE,DC=EC,则不正确的结论是( ).
A. Rt△ACD和Rt△BCE全等B. OA=OB
C. E是AC的中点D. AE=BD
13. 点在的角平分线上,点到边的距离等于,点是边上的任意一点,则下列选项正确的是( )
A. B. C. D.
14. 如图,,下列等式不一定正确的是( )
A. B. C. D.
15. 如图,已知在△ABC中,,点D,E分别在边,上,,,若,则的度数为( )
A. 30°B. 40°C. 50°D. 60°
16. 一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是( )(用含a,b的代数式表示).
A. abB. 2abC. a2﹣abD. b2+ab
二.填空题(本大题共3题,总计 12分)
17. 若,则可表示为________(用含a、b的代数式表示).
18. 有一三角形纸片ABC,∠A=70°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两个纸片均为等腰三角形,则∠C的度数可以是_____.
19. 如图,在正方形中,,延长到点,使,连接,动点从点出发,以每秒的速度沿向终点运动.设点的运动时间为秒,当和全等时,的值为 __.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. 计算(1)
(2)
(3)
(4)
21. (1)解方程:
(2)先化简,再求值,其中.
22. 如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).
(1)在图中作出△ABC关于轴对称的.
(2)写出点的坐标(直接写答案).
(3)的面积为___________
23. 如图,在△ABC中,AB=AC,∠A=36°,DE是AB的垂直平分线.
(1)求证:△BCD是等腰三角形;
(2)若△ABD的周长是a,BC=b,求△BCD的周长.(用含a,b的代数式表示)
24. (1)若,求的值;
(2)请直接写出下列问题的答案:
①若,则___________;
②若,则__________.
25. 某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:
已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.
(1)求表中a的值;
(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餍椅的总数量不超过200张.该商场计划将餐桌成套(一张餐桌和四张餐椅配成一套)销售,多余的桌或椅以零售方式销售.请问当进货量最大时获得的利润是多少?
26. (1)问题发现:如图,△ABC和△DCE都是等边三角形,点B、D、E在同一条直线上,连接AE.
①的度数为________;
②线段AE、BD之间的数量关系为________;
(2)拓展探究:如图②,△ABC和△DCE都是等腰直角三角形,,点B、D、E在同一条直线上,CM为△DCE中DE边上的高,连接AE.试求的度数及判断线段CM、AE、BM之间的数量关系,并说明理由;
(3)解决问题:如图,△ABC和△DCE都是等腰三角形,,点B、D、E在同一条直线上,请直接写出的度数.
尚义县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:B
【解析】:轴对称的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够相互重合,则称该图形为轴对称图形.
根据定义,B选项的图形符合题意.
故选B.
2.【答案】:B
【解析】:∵分式值为0,
∴,
∴x=1.
故选:B.
3.【答案】:B
【解析】:可知a=1.25,从左起第一个不为0的数字前面有7个0,所以n=7,
∴0.000000125=1.25×10−7 .
故选:B.
4.【答案】:C
【解析】:解:
故选:C.
5.【答案】:A
【解析】:解:一个正多边形,它的一个内角恰好是一个外角的5倍,且一个内角与一个外角的和为,
这个正多边形的每个外角都相等,且外角的度数为,
这个正多边形的边数为,
故选:A.
6.【答案】:B
【解析】:解:根据题意得:,
∴△ODM≌△CEN的依据是“”,
故选:B.
7.【答案】:D
【解析】:解:由图可知,三角形两角及夹边可以作出,
所以,依据是ASA.
故选:D.
8.【答案】:B
【解析】:原式=,
故选B.
【画龙点睛】本题考查了幂的混合运算,掌握幂的运算法则是解题的关键.
9.【答案】:A
【解析】:解:∵∠B=90°,∠A=30°,AC=a,
∴BC=AC=a,
∵以点C为圆心,CB长为半径画弧交AC于点D,
∴CD=BC=a,
∵以点A为圆心,AD长为半径画弧交AB于点E,
∴AD=AE=AC-CD=a,
∵AB=m,
∴BE=AB-AE=m-a,
故选:A.
10.【答案】:A
【解析】:解:连接AA′,如图:
∵A'B平分∠ABC,A'C平分∠ACB,∠BA'C=110°,
∴∠A′CB+∠A′BC=70°,
∴∠ACB+∠ABC=140°,
∴∠BAC=180°-140°=40°,
∴∠1=∠DAA′+∠DA′A,∠2=∠EAA′+∠EA′A,
∵∠DAA′=∠DA′A,∠EAA′=∠EA′A,
∴∠1+∠2=2(∠DAA′+∠EAA′)=2∠BAC=80°.
故选:A
11.【答案】:C
【解析】:解:∵FE⊥DB,
∵∠DEF=90°,
∵∠1=50°,
∴∠D=90°﹣50°=40°,
∵AB∥CD,
∴∠2=∠D=40°.
故选C.
12.【答案】:C
【解析】:解:A.∵∠C=∠C=90°,
∴△ACD和△BCE是直角三角形,
在Rt△ACD和Rt△BCE中,
∵AD=BE,DC=CE,
∴Rt△ACD≌Rt△BCE(HL),正确;
B.∵Rt△ACD≌Rt△BCE,
∴∠B=∠A,CB=CA,
∵CD=CE,
∴AE=BD,
在△AOE和△BOD中,
∵
∴△AOE≌△BOD(AAS),
∴AO=OB,正确,不符合题意;
C.AE=BD,CE=CD,不能推出AE=CE,错误,符合题意;
D.∵Rt△ACD≌Rt△BCE,
∴∠B=∠A,CB=CA,
∵CD=CE,
∴AE=BD,正确,不符合题意.
故选C.
13.【答案】:B
【解析】:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,
∴点P到OB的距离为5,
∵点Q是OB边上的任意一点,
∴PQ≥5.
故选:B.
14.【答案】:D
【解析】:,
,,,,
,
,
即只有选项符合题意,选项A、选项B、选项C都不符合题意;
故选:D.
15.【答案】:C
【解析】:如图,过点D作于点F.
∴在△DBE和中,
∴△DBE≅△DFC(AAS),
∴,
∴AD为的角平分线,
∴,
∴.
故选C.
16.【答案】:A
【解析】:解:设小正方形的边长为x,则大正方形的边长为a﹣2x=2x+b,
可得x=,大正方形边长为=,
则阴影部分面积为()2﹣4()2==ab,
故选:A.
二. 填空题
17.【答案】: .
【解析】:∵,
∴====.
故答案为:.
18.【答案】: 20°或35°或27.5°
【解析】:由题意知△ABD与△DBC均为等腰三角形,
对于△ABD可能有①AB=BD,此时∠ADB=∠A=70°,
∴∠BDC=180°﹣∠ADB=180°﹣70°=110°,
∠C=(180°﹣110°)=35°,
②AB=AD,此时∠ADB=(180°﹣∠A)=(180°﹣70°)=55°,
∴∠BDC=180°﹣∠ADB=180°﹣55°=125°,
∠C=(180°﹣125°)=27.5°,
③AD=BD,此时,∠ADB=180°﹣2×70°=40°,
∴∠BDC=180°﹣∠ADB=180°﹣40°=140°,
∠C=(180°﹣140°)=20°,
综上所述,∠C度数可以为20°或35°或27.5°.
故答案为:20°或35°或27.5°
【画龙点睛】本题考查了等腰三角形的性质,难点在于分情况讨论.
19.【答案】: 2或7
【解析】:∵正方形ABCD,
∴
是直角三角形,
为直角三角形,
点只能在上或者上,
当点在上时,如图,当时,有,
,
,
,
当点在上时,则当时,有,
,
故答案为:2或7.
三.解答题
20【答案】:
(1) ;(2) ;
(3)100;(4).
【解析】:
解:(1)原式=1+4-
=;
(2)原式=a6-a6-8a6
=-8a6;
(3)原式=(10+)×(10-)+32017×()2017×()2
=100-+1×
=100;
(4)原式=[a-(b-2)][a+(b-2)]
=a2-(b-2)2
= a2-b2+4b-4.
21【答案】:
(1);
(2);
【解析】:
(1)解:方程两边同时乘以,得
解得,
检验:当时,,
所以原分式方程的解为
(2)解:原式
,
当时,原式.
22【答案】:
(1)见解析;(2)A1(-1,2)、B1(-3,1)、C1(2,-1);(3)
【解析】:
解:(1)如图所示,△A1B1C1即为所求.
(2)由图知,A1(-1,2)、B1(-3,1)、C1(2,-1);
(3)△A1B1C1的面积=
23【答案】:
(1)见解析 (2)a﹣b
【解析】:
【小问1详解】
证明:∵AB=AC,∠A=36°,
∴∠ABC=∠C==72°,
∵DE是AC的垂直平分线,
∴AD=BD,
∴∠ABD=∠A=36°,
∵∠CDB是△ADB的外角,
∴∠CDB=∠ABD+∠A=72°,
∴∠C=∠CDB,
∴CB=DB,
∴△BCD是等腰三角形;
【小问2详解】
解:由(1)可知AD=BD=CB=b,
∵△ABD周长是a,
∴AB=a﹣2b,
∵AB=AC,
∴CD=a﹣3b,
∴△BCD的周长=CD+BD+BC=a﹣3b+b+b=a﹣b.
【画龙点睛】本题考查了等腰三角形的性质与判定,线段垂直平分线的性质,三角形的内角和与三角形的外角的定义与性质,综合运用以上知识是解题的关键.
24【答案】:
(1)12;(2)①;②17
【解析】:
(1)∵,
∴,
∴;
(2)①∵,
∴=,
∴;
故答案为:;
②设a=4-x,b=5-x,
∵a-b=4-x-(5-x)=-1,
∴,
∴,
∵ab=,
∴,
∴,
故答案为:17.
25【答案】:
(1)150
(2)当进货量最大时获得的利润是7200元
【解析】:
(1)根据题意确定等量关系列方程即可.
(2)首先设购进桌子的数量为x,求出其取值范围,再列出总利润和x的函数关系,根据一次函数性质求最大值即可.
【小问1详解】
解:根据题意,得:,解得:
经检验符合实际且有意义.
∴表中a的值为150.
【小问2详解】
解:设餐桌购进x张,则餐椅购进张,
依题意列:
解得:
设利润为W元,
则
∵
∴W随x的增大而增大
∴当 x=30时,W 有最大值
此时 .
答:当进货量最大时获得的利润是7200元.
【画龙点睛】本题考查了分式方程和一元一次不等式以及一次函数的性质,解题的关键是理解题意,找出等量关系列出方程,再根据一次函数性质求最大利润.
26【答案】:
(1)①;②;
(2),理由见解析;(3)
【解析】:
(1)①;②;
【解法提示】∵△ABC和△DCE都是等边三角形,
,,,,
即,
在和△DCB中,
,,,
∴△ECA≅△DCBSAS,
.
.
(2).
理由如下:△ABC和△DCE都是等腰直角三角形,
,,,,
,
又,
,
∴△ECA≅△DCBSAS,
,,
,
,
∵△DCE是等腰直角三角形,CM为△DCE中DE边上的高,
,
,
;
(3)∵△DCE是等腰三角形,,
,
,
由(1)同理可得△ECA≅△DCB,
,
,
∵△ABC是等腰三角形,,
,
.原进价(元/张)
零售价(元/张)
成套售价(元/套)
餐桌
a
270
500元
餐椅
70
相关试卷
这是一份河北省青县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共26页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省景县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共22页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省阜城县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共21页。试卷主要包含了选择题等内容,欢迎下载使用。