河北省阳原县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省阳原县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共24页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 下列图案中,是轴对称图形的是( )
A. B. C. D.
2. 下列运算正确的是( )
A. B.
C. D.
3. 熔喷布,俗称口罩的“心脏”,是口罩中间的过滤层,能过滤细菌,阻止病菌传播.经测量,医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为( )
A. B. C. D.
4. 下列各式变形中,是因式分解的是( )
A. B.
C. D.
5. 若点,关于y轴对称,则点所在的象限是( )
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
6. 下列式子从左到右的变形是因式分解的是( )
A. B.
C. D.
7. 已知:,,则的值是( )
A. B. C. 4D.
8. 下列说法正确的是( )
A. 代数式是分式B. 分式中x,y都扩大3倍,分式的值不变
C. 分式的值为0,则x的值为D. 分式是最简分式
9. 若,,则的值为( )
A. 4B. -4C. D.
10. 若是完全平方式,则m的值为( )
A. 3B. C. 7D. 或7
11. 如图,在ΔABC中,DE是AC的垂直平分线,AE=3cm,ΔABD的周长为13cm,则ΔABC的周长是( )
A. 13cmB. 16cmC. 19cmD. 22cm
12. 一个三角形两边长分别为4和6,且第三边长为整数,这样的三角形的周长最小值是( )
A. 20B. 16C. 13D. 12
13. 如果把分式中的,都扩大3倍,那么分式的值( )
A. 扩大3倍B. 不变
C. 缩小3倍D. 扩大9倍
14. 如图,△ABC≌△ADE,且AE∥BD,∠BAD=94°,则∠BAC的度数的值为( )
A. 84°B. 60°C. 48°D. 43°
15. 如图,把长方形纸片纸沿对角线折叠,设重叠部分为△,那么,下列说法错误的是( )
A. △是等腰三角形,
B. 折叠后∠ABE和∠CBD一定相等
C. 折叠后得到的图形是轴对称图形
D. △EBA和△EDC一定是全等三角形
16. 如图,在四边形ABCD中,∠C=40°,∠B=∠D=90°,E,F分别是BC,DC上的点,当ΔAEF的周长最小时,∠EAF的度数为( )
A. 100°B. 90°C. 70°D. 80°
二.填空题(本大题共3题,总计 12分)
17. 已知.
(1)a的值为___________;
(2)若,则___________.
18. 已知在△ABC中,三边长,满足等式,请你探究之间满足的等量关系为__________.
19. 已知△ABC是等边三角形,点D在射线BC上(与点B,C不重合),点D关于直线的对称点为点E.
(1)如图1,连接,,,当时,根据边的关系,可判定的形状是___________三角形;
(2)如图2,当点D在延长线上时,连接,,,,延长到点G,使,连接,交于点F,F为的中点.若,则的长为___________.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. 计算
(1)(﹣2a2)(3ab2﹣5ab3)
(2)(5x+2y)•(3x﹣2y)
21. 解分式方程:
22. 如图,已知△ABC的顶点分别为,,.
(1)作出△ABC关于x轴对称的图形,并写出点的坐标;
(2)若点是内部一点,则点P关于y轴对称的点的坐标是________.
(3)在x轴上找一点P,使得最小(画出图形,找到点P的位置).
23. 如图,在△ABC中,射线AM平分∠BAC.
(1)尺规作图(不写作法,保留作图痕迹)作BC的中垂线,与AM相交于点G,连接BG、CG;
(2)在(1)条件下,∠BAC和∠BGC有何数量关系?并证明你的结论.
24. 实践与探索
如图1,边长为的大正方形有一个边长为的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示)
(1)上述操作能验证的等式是__________;(请选择正确的一个)
A. B. C.
(2)请应用这个公式完成下列各题:
①已知,,则__________.
②计算:
25. 某商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶进价比乙种牛奶的进价每件少4元,其用200元购进甲种牛奶的数量与用220元购进乙种牛奶的数量相同.
(1)求甲种牛奶、乙种牛奶的进价分别是多少元?
(2)若该商场购进甲种牛奶的数量是乙种牛奶的2倍少4件,该商场甲种牛奶的销售价格为每件45元,乙种牛奶的销售价格为每件50元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)等于364元,请通过计算求出该商场购进甲、乙两种牛奶各多少件?
26. 如图,已知△ABC和△ADE均为等腰三角形,,,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.
(1)如图1,若,求证:;
(2)在(1)的条件下,求的度数;
拓广探索:
(3)如图2,若,,CF为中BE边上的高,请直接写出的度数和EF的长度.
阳原县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
【解析】:A选项不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意.
B选项不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意.
C选项轴对称图形,符合题意.
D选项不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意.
2.【答案】:D
【解析】:A、,故不符合题意;
B 、,故不符合题意;
C、,故不符合题意;
D、,故符合题意;
故选:D.
3.【答案】:C
【解析】:解:0.000156用科学记数法可表示为1.56×10﹣4.
故选:C.
4.【答案】:D
【解析】:解:A、等式的右边不是整式的积的形式,故A错误;
B、等式右边分母含有字母不是因式分解,故B错误;
C、等式的右边不是整式的积的形式,故C错误;
D、是因式分解,故D正确;
故选D.
5.【答案】:C
【解析】:解:∵点A(a,3)、点B (2,-b)关于y轴对称,
∴a=2,-b=3,
解得:a=-2,b=-3,
∴点M(a,b)在第三象限,
故选:C.
6.【答案】:B
【解析】:解:A.是整式的乘法,故A错误;
B.把一个多项式转化成几个整式积乘积的形式,故B正确;
C.因式分解出现错误,,故C错误;
D.没把一个多项式转化成几个整式积乘积的形式,故D错误;
故选B.
7.【答案】:D
【解析】:
∴= =4÷8×9=
故选:D
8.【答案】:D
【解析】:A. 代数式不是分式,故该选项不正确,不符合题意;
B. 分式中x,y都扩大3倍,分式的值扩大3倍,故该选项不正确,不符合题意;
C. 分式的值为0,则x的值为,故该选项不正确,不符合题意;
D. 分式是最简分式,故该选项正确,符合题意;
故选:D.
9.【答案】:A
【解析】:因为,
所以,
因为,
所以,
联立方程组可得:
解方程组可得,
所以,
故选A.
10.【答案】:D
【解析】:∵关于x的二次三项式是一个完全平方式,
∴m-2=±1×5,
∴m=7或-3,故D正确.
故选:D.
【画龙点睛】本题主要考查了完全平方公式的应用,解答此题的关键是要明确:.
11.【答案】:C
【解析】:解:∵DE是AC的垂直平分线,
∴AD=CD,AC=2AE=6cm,
又∵△ABD的周长=AB+BD+AD=13cm,
∴AB+BD+CD=13cm,
即AB+BC=13cm,
∴△ABC的周长=AB+BC+AC=13+6=19cm.
故选:C.
12.【答案】:C
【解析】:解:设三角形的第三边为x,
∵三角形的两边长分别为4和6,
∴2<x<10,
∵第三边为整数,
∴第三边x的最小值为3,
∴三角形周长的最小值为:3+4+6=13.
故选:C
13.【答案】:B
【解析】:.
故选:B.
【画龙点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.
14.【答案】:D
【解析】:∵△ABC≌△ADE,∠BAD=94°,
∴AB=AD,∠BAC=∠DAE,
∴∠ABD=∠ADB=×(180°﹣94°)=43°,
∵AE//BD,
∴∠DAE=∠ADB=43°,
∴∠BAC=∠DAE=43°.
故选:D.
15.【答案】:B
【解析】:∵四边形ABCD为长方形
∴∠BAE=∠DCE=90°,AB=CD,
在△EBA和△EDC中,
∵∠AEB=∠CED,∠BAE=∠DCE, AB=CD,
∴△EBA≌△EDC (AAS),
∴BE=DE,
∴△EBD为等腰三角形,
∴折叠后得到的图形是轴对称图形,
故A、C、D正确,
无法判断∠ABE和∠CBD是否相等,B选项错误;
故选B.
16.【答案】:A
【解析】:解:作点A关于直线BC和直线CD的对称点G和H,连接GH,交BC、CD于点E、F,连接AE、AF,则此时△AEF的周长最小,
∵四边形的内角和为,
∴,
即①,
由作图可知:,,
∵的内角和为,
∴②,
方程①和②联立方程组,
解得.
故选:A.
二. 填空题
17.【答案】: ①. 1 ②. 3
【解析】:解:(1)
故答案为:1;
(2)当,时,
故答案为:3.
18.【答案】:
【解析】:∵,
∴,
∴,
∴
∵,
∴,
∴,
故答案为:
19.【答案】: ①. 等边 ②. 6
【解析】:(1)△ADE是等边三角形,理由如下:
点D, E关于直线AC对称,
AD=AE,∠DAC=∠EAC,
∵△ABC是等边三角形,
AB=AC,∠BAC=60°,
点D为线段BC的中点,
,
,
∠DAE=60°,
AD=AE,
△ADE是等边三角形;
(2)解:如图2所示,.
证明: F为线段BE的中点,
BF=EF,
∵△ABC是等边三角形,
AC=BC, ,
,
点D, E关于直线AC对称,
CD=CE,∠ACD=∠ACE=120°,
, ,
CE=BG,∠BCE=60°,
,,
,
在△BFG和△EFC中,
∴△BFG≌△EFCSAS ,
,
CG=2CF,
在 和 中,
,
∴△ACD≌△CBGSAS ,
AD=CG,
,
,
;
故答案为:等边;6.
三.解答题
20【答案】:
(1)﹣6a3b2+10a3b3
(2)15x2﹣4xy﹣4y2.
【解析】:
(1)(﹣2a2)(3ab2﹣5ab3)=﹣6a3b2+10a3b3;
(2)(5x+2y)•(3x﹣2y)
=15x2﹣10xy+6xy﹣4y2)
=15x2﹣4xy﹣4y2.
21【答案】:
无解
【解析】:
解:去分母得:4+x2-1=x2-2x+1,
解得:x=-1,
经检验x=-1是增根,分式方程无解.
【画龙点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
22【答案】:
(1)图见解析,点的坐标为;
(2);
(3)见解析.
【解析】:
(1)分别找出A,B,C关于x轴对称的点A1,B1,C1,再顺次连接点即可;
(2)利用“关于谁对称谁不变,不关谁对称谁全变”可求出P的对称点坐标;
(3)过x轴作点A的对称点为A1,连接A1C交于x轴的点即为点P,使得最小.
【小问1详解】
解:先找出点A,B,C关于x轴对称的点A1,B1,C1,再顺次连接A1,B1,C1.
如图所示,即为所求:
的坐标为.
【小问2详解】
解:∵P关于y轴对称,则纵坐标不变,横坐标变成原来的相反数,
∴点P关于y轴对称的点的坐标是.
【小问3详解】
解:过x轴作点A的对称点为A1,连接A1C交于x轴的点即为点P,使得最小.点P如图所示:
【画龙点睛】本题考查作轴对称图形,找关于坐标轴对称的点的坐标,以及动点问题.关键是掌握画轴对称图形的方法:先找对称点,再连线;熟记关于坐标轴对称的点的坐标变化特征;利用对称性解决动点问题.
23【答案】:
(1)详见解析;(2)∠BAC+∠BGC=180°,证明详见解析.
【解析】:
解:(1)线段BC的中垂线EG如图所示:
(2)结论:∠BAC+∠BGC=180°.
理由:在AB上截取AD=AC,连接DG.
∵AM平分∠BAC,
∴∠DAG=∠CAG,
在△DAG和△CAG中
∵
∴△DAG≌△CAG(SAS),
∴∠ADG=∠ACG,DG=CG,
∵G在BC的垂直平分线上,
∴BG=CG,
∴BG=DG,
∴∠ABG=∠BDG,
∵∠BDG+∠ADG=180°,
∴∠ABG+∠ACG=180°,
∵∠ABG+∠BGC+∠ACG+∠BAC=360°,
∴∠BAC+∠BGC=180°.
24【答案】:
(1)A;(2)①4;②5050
【解析】:
(1)图1表示,图2的面积表示,两个图形阴影面积相等,得到
故选A ;
(2)①
∵
∴,解得
②原式=(1002-992)+(982-972)+…+(42-32)+(22-12)
=(100+99)(100-99)+(98+97)(98-97)+…+(4+3)(4-3)+(2+1)(2-1)
=100+99+98+97+…+4+3+2+1
=101×50
=5050
【画龙点睛】本题考查了平方差公式的几何证明,题目较为简单,需要利用正方形和长方形的面积进行变形求解.
25【答案】:
(1)甲种牛奶的进价是40元/件,乙种牛奶的进价是44元/件;
(2)该商场购进甲种牛奶44件,乙种牛奶24件
【解析】:
【小问1详解】
设乙种牛奶的进价为x元/件,则甲种牛奶的进价为(x﹣4)元/件,
根据题意,得:
解得:x=44,
经检验,x=44是原分式方程的解,且符合实际意义,
∴x﹣4=40.
∴甲种牛奶的进价是40元/件,乙种牛奶的进价是44元/件;
【小问2详解】
设购进乙种牛奶y件,则购进甲种牛奶(2y﹣4)件,
根据题意,得(45﹣40)(2y﹣4)+(50﹣44)y=364,
解得y=24,
∴2y﹣4=44.
∴该商场购进甲种牛奶44件,乙种牛奶24件.
26【答案】:
(1)证明见解析
(2)∠BEC=80°
(3)∠BEC=120°,EF=2
【解析】:
【小问1详解】
证明:如图1中,
∵∠ABC=∠ACB=∠ADE=∠AED,
∴∠EAD=∠CAB,
∴∠EAC=∠DAB,
∵AE=AD,AC=AB,
在△BAD和△CAE中,
∵,
∴.
【小问2详解】
解:如图1中,设AC交BE于O.
∵∠ABC=∠ACB=50°,
∴∠BAC=180°﹣110°=80°,
∵,
∴∠ABO=∠ECO,
∵∠EOC=∠AOB,
∴∠CEO=∠BAO=80°,
即∠BEC=80°.
【小问3详解】
解:如图2中,
∵∠CAB=∠EAD=120°,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴,
∴∠BAD=∠ACE,EC=BD=4,
由(2)同理可证∠BEC=∠BAC=120°,
∴∠FEC=60°,
∵CF为中BE边上的高,,
∴∠F=90°,
∴∠FCE=30°,
∴EF=EC=2.
【画龙点睛】本题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
相关试卷
这是一份河北省蔚县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共20页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省献县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共25页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省青县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共26页。试卷主要包含了选择题等内容,欢迎下载使用。