所属成套资源:人教版数学七年级上册期末拓展训练专题 (2份,原卷版+解析版)
- 人教版数学七年级上册期末拓展训练专题1.1有理数的有关概念12大考点精讲精练(2份,原卷版+解析版) 试卷 0 次下载
- 人教版数学七年级上册期末拓展训练专题1.2整式的加减十大考点精讲精练(2份,原卷版+解析版) 试卷 0 次下载
- 人教版数学七年级上册期末拓展训练专题1.4一元一次方程及解法十大核心考点精讲精练(2份,原卷版+解析版) 试卷 0 次下载
- 人教版数学七年级上册期末拓展训练专题1.5一元一次方程的应用14大类型热门考点精讲精练(2份,原卷版+解析版) 试卷 0 次下载
- 人教版数学七年级上册期末拓展训练专题1.6线段与角的计算十二大核心考点精讲精练(2份,原卷版+解析版) 试卷 0 次下载
人教版数学七年级上册期末拓展训练专题1.3整式的加减应用及综合问题八大核心考点精讲精练(2份,原卷版+解析版)
展开
这是一份人教版数学七年级上册期末拓展训练专题1.3整式的加减应用及综合问题八大核心考点精讲精练(2份,原卷版+解析版),文件包含人教版数学七年级上册期末拓展训练专题13整式的加减应用及综合问题八大核心考点精讲精练原卷版doc、人教版数学七年级上册期末拓展训练专题13整式的加减应用及综合问题八大核心考点精讲精练解析版doc等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
【目标导航】
【知识梳理】
1.代数式求值
(1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.
(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.
(3)题型简单总结以下三种:
已知条件不化简,所给代数式化简;
已知条件化简,所给代数式不化简;
已知条件和所给代数式都要化简.
2.整式加减的应用主要考查的题型有:
(1)整体思想在整式加减中的应用
(2)代数式求值问题
(3)整式加减中的无关性问题
(4)整式的应用——面积问题
(5)整式的应用——销售问题
(6)整式的应用——方案比较问题
(7)探索规律——数字变化问题
(8)探索规律——图形变化问题
【典例剖析】
【考点1】整体思想在整式加减中的应用
【例1】(2020秋•滨海新区期末)我们知道,4a﹣3a+a=(4﹣3+1)a=2a,类似地,我们把(x+y)看成一个整体,则4(x+y)﹣3(x+y)+(x+y)=(4﹣3+1)(x+y)=2(x+y).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.
请尝试:
(1)把(m﹣n)2看成一个整体,合并2(m﹣n)2﹣4(m﹣n)2+(m﹣n)2的结果是 ;
(2)已知x2﹣4x=2,求3x2﹣12x的值;
(3)已知a﹣2b=3,c﹣d=3,2b﹣c=﹣10,求(2b﹣d)﹣(2b﹣c)+(a﹣c)的值.
【变式1.1】(2022秋•香洲区期中)我们知道,4a﹣3a+a=(4﹣3+1)a=2a,类似地,我们把(x+y)看成一个整体,则4(x+y)﹣3(x+y)+(x+y)=(4﹣3+1)(x+y)=2(x+y).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.请尝试:
(1)把(m﹣n)2看成一个整体,合并2(m﹣n)2﹣4(m﹣n)2+(m﹣n)2的结果是 .
(2)已知x2﹣4x=2,求3x2﹣12x﹣10的值;
(3)已知a﹣2b=3,c﹣d=3,2b﹣c=﹣10,求(2b﹣d)﹣(2b﹣c)+(a﹣c)的值.
【变式1.2】(2022秋•张湾区期中)阅读材料:“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:
原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=﹣4两边同乘以2,得10a+6b=﹣8.
仿照上面的解题方法,完成下面的问题:
(1)已知a2+a=0,求2a2+2a+2017的值;
(2)已知a﹣b=﹣3,求3(a﹣b)﹣a+b+5的值;
【变式1.3】(2022秋•石阡县期中)[阅读材料]
我们知道,4x+2x﹣x=(4+2﹣1)x=5x,类似地,我们把(a+b)看成一个整体,则4(a+b)+2(a+b)﹣(a+b)=(4+2﹣1)(a+b)=5(a+b).“整体思想”是解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.
[尝试应用]
(1)把(a﹣b)2看成一个整体,将3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2合并同类项,结果是 ;
(2)已知x2+2y=5,求3x2+6y﹣21的值;
[拓展探索]
(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣c)﹣(2b﹣d)的值.
【考点2】代数式求值问题
【例2】(2020秋•平山县期中)已知a2+ab=﹣3,ab+b2=7,试求a2+2ab+b2与a2﹣b2的值.
【变式2.1】通过计算填写下表.
请你根据上表,直接写出a2与(a)2之间的数量关系;并验证当a时,上式是否成立?
【变式2.2】请根据图示的对话,解答下列问题.
我不小心把老师布置的作业题弄丢了,只记得式子是8﹣a+b﹣c.
我告诉你,a的相反数是3,b的绝对值是7,c与b的和是﹣8.
(1)求a,b的值;
(2)求8﹣a+b﹣c的值.
【变式2.3】(2022秋•南开区期中)已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.
(Ⅰ)化简:2A﹣B;
(Ⅱ)若x+y,xy=﹣1,求2A﹣3B的值.
【考点3】整式加减中的无关性问题
【例3】(2019秋•黄冈期末)已知A=2a2+3ab﹣2a﹣1,B=﹣a2+12ab+2.
(1)化简4A﹣(3A﹣2B);
(2)若(1)中式子的值与a的取值无关,求b的值.
【变式3.1】(2022秋•东港区校级期中)有这样一道题:当a=2,b=﹣2时,求多项式的值,马小虎做题时把a=2错抄成a=﹣2,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.
【变式3.2】(2022秋•丹徒区期中)已知:A=x2+2x﹣1,B=3x2﹣2ax+1.
(1)当x=1,a=﹣3时,求B的值;
(2)用含a,x的代数式表示3A﹣B;
(3)若3A﹣B的值与x无关,求a的值.
【变式3.3】(2022秋•石阡县期中)已知M=x2﹣ax﹣1,N=3x2﹣2ax﹣2x﹣1.
(1)求N﹣(N﹣2M);
(2)若多项式3M﹣N的值与字母x的取值无关,求a的值.
【考点4】整式的应用——面积问题
【例4】(2018秋•曲阳县期末)将7张相同的小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD内,未被覆盖的部分恰好被分割为两个长方形,面积分别为S1,S2,已知小长方形纸片的长为a,宽为b,且a>b
(1)当a=9,b=2,AD=30时,请求:
①长方形ABCD的面积;
②S2﹣S1的值.
当AD=30时,请用含a,b的式子表示S2﹣S1的值.
【变式4.1】(2022秋•社旗县期中)某校开展了丰富多样的劳动实践课.八(1)班在边长为a米的正方形空地的四角均留出一块边长为b米的正方形空地种植萝卜,其余的地方种植白菜.
(1)先画出本题的示意图.
(2)用含a、b的代数式表示种植白菜的面积.
(3)当a=6.4米、b=1.8米时,计算种植白菜的面积.
【变式4.2】(2022秋•历下区期中)小磊房间窗户的装饰物如图阴影部分所示,它们由两个半径相同的四分之一圆组成(单位:米).
(1)请用字母表示装饰物的面积(结果保留π): ;
(2)请用字母表示窗户能射进阳光的部分面积(结果保留π): ;
(3)若a,b=2时,请求出窗户能射进阳光的面积(π取3).
【变式4.3】(2022秋•高港区期中)如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“5”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示.
(1)用含a、b的代数式表示新矩形的周长;
(2)当a=4,b=1时,求新矩形的周长.
【考点5】整式的应用——销售问题
【例5】(2020秋•岐山县期中)某商店销售一种商品,每件成本a元,每件先按成本增加b元定出售价,销售了20件.后来由于库存积压,在原售价的基础上降价20%出售,又销售了50件.请用含a,b的代数式表示.
(1)该商店销售70件这种商品的总销售额为多少元?
(2)销售70件这种商品,该商店共盈利多少元?
【变式5.1】(2022秋•盐城期中)随着北京冬奥会周边“冰墩墩”不断售罄,某玩具加工厂打算紧急招聘了80名工人进行冰墩墩的制作,已知冰墩墩分为普通款和升级款两种款式,普通工人每人每天可以生产2件普通款或1件升级款,根据市场行情,普通款每件利润为150元,升级款每件利润为350元,设每天生产升级款x件.
(1)根据信息填表:
(2)当x=30时,工厂每日的利润可达到多少元?
【变式5.2】(2022秋•长汀县期中)某农户去年承包荒山若干亩,投资17800元改造后,种果树2000棵.今年水果总产量为18000千克,此水果在市场上每千克售a元,在果园每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售2000千克,需8人帮忙,每人每天付工资100元,农用车运费及其他各项税费平均每天400元.
(1)分别用a,b表示两种方式出售水果的收入?
(2)若a=2.6,b=2.1,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.
(3)该农户加强果园管理,力争到明年纯收入达到25000元,那么纯收入增长率是多少?(纯收入=总收入﹣总支出,该农户采用了(2)中较好的出售方式出售)
【变式5.3】(2022秋•青云谱区期中)某超市在双十一期间对顾客实行优惠,规定如下:
(1)若王老师一次性购物600元,他实际付款 元.若王老师实际付款160元,那么王老师一次性购物可能是 元;
(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款 元,当x大于或等于500元时,他实际付款 元(用含x的代数式表示并化简);
(3)如果王老师有两天去超市购物原价合计900元,第一天购物的原价为a元(200<a<300),用含a的代数式表示这两天购物王老师实际一共付款多少元?当a=250元时,王老师两天一共节省了多少元?
【考点6】整式的应用——方案比较问题
【例6】(2019秋•南召县期末)某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元.“十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.
方案一:买一台微波炉送一台电磁炉;
方案二:微波炉和电磁炉都按定价的90%付款.
现某客户要到该卖场购买微波炉10台,电磁炉x台(x>10).
(1)若该客户按方案一购买,需付款 (200x+6000) 元.(用含x的代数式表示)若该客户按方案二购买,需付款 (180x+7200) 元.(用含x的代数式表示)
(2)若x=30,通过计算说明此时按哪种方案购买较为合算?
(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.并计算需付款多少元?
【变式6.1】(2022秋•未央区校级期中)某商场销售一款运动鞋和运动袜,运动鞋每双定价200元,运动袜每双定价40元,商场决定开展促销活动,活动期间向客户提供两种优惠方案,方案一:买一双运动鞋送一双运动袜;方案二:运动鞋和运动袜都按定价的90%付款,现某客户要到该商场购买运动鞋10双和运动袜x双(x>10).
(1)若该客户按方案一购买,需付款 元;(需化简)若该客户按方案二购买,需付款 元.(需化简)
(2)当x=20时,通过计算说明上面的两种购买方案哪种省钱?
【变式6.2】(2022秋•临潼区期中)青少年活动中心为了满足乒乓球社团活动的需要,决定购置某品牌乒乓球拍和乒乓球.以阳呼乒乓球拍每副定价90元,乒乓球每个定价20元.现有A、B两个体育店出售这种品牌,并提出了各自的优惠方案.具体如下:
A店乒乓球拍和乒乓球都按定价的8折付款;B店买一副乒乓球拍送4个乒乓球.
已知该青少年活动中心共购买乒乓球拍50副,乒乓球x个(x>200).
(1)求在A店、B店购买各需付多少元钱(用含x的式子表示)?
(2)当x=500时,在哪家购买划算.
【变式6.3】(2022秋•黄冈期中)某商店销售羽毛球拍和羽毛球,羽毛球拍每副定价40元,羽毛球每桶定价10元,“双十一”期间商店决定开展促销活动,活动期间向客户提供两种优惠方案.
方案一:买一副羽毛球拍送一桶羽毛球;
方案二:羽毛球拍和羽毛球都按定价的90%付款.
现某客户要到该商店购买羽毛球拍10副,羽毛球x桶(x>10).
(1)若该客户按方案一、方案二购买,分别需付款多少元?(用含x的代数式表示)
(2)当x=30时,通过计算,说明此时按哪种方案购买较为合算?
(3)当x=30时,你还能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?
【考点7】探索规律——数字变化问题
【例7】(2020秋•莲湖区期中)观察下列等式:
1,,,
将以上三个等式两边分别相加得:
11.
(1)猜想并写出: .
(2)直接写出计算结果: ;
(3)探究并计算:
①.
②.
【变式7.1】(2022秋•顺德区校级期中)定义一种新运算“f”:f(n)表示n在运算f作用下的结果.若f(n)=n2﹣(n﹣1)2表示n在运算f作用下的结果,它对一些数的运算结果如下:f(1)=12﹣(t﹣1)2=1,f(2)=22﹣(2﹣1)2=3,f(3)=32﹣(3﹣1)2=5,……
根据以上定义完成以下问题:
(1)计算f(20)的值;
(2)计算f (1)+f (2)+f (3)+…+f(20)的值;
(3)计算的值.
【变式7.2】(2022秋•龙口市期中)阅读材料:求1+2+22+23+24+…+2100.
首先设S=1+2+22+23+24+…+2100①,
则2S=2+22+23+24+25+…+2101②,
②﹣①得S=2101﹣1,
即1+2+22+23+24+…+2100=2101﹣1.
以上解法,在数列求和中,我们称之为“错位相减法”.
请你根据上面的材料,解决下列问题:
(1)1+2+22+23+24+…+22000.
(2)1()2+()3+()4+…+()2000;
(3)求1+3+32+33+34+…+32022的值.
【变式7.3】(2022秋•黄陂区期中)观察下列四行数,回答下面的问题:
﹣2,4,﹣8,16,﹣32,…;①
0,6,﹣6,18,﹣30,…;②
﹣1,2,﹣4,8,﹣16,…;③
3,﹣3,9,﹣15,33,…;④
(1)第①行数的第7个数是 ;
(2)设第①行第n个数为a,写出第②行数的第n个数是 (用含a的式子表示);
(3)取每行数中的第m个数,则第①②④行这三个数的和能否等于﹣509?如果能,请你求出m的值,如果不能,请说明理由;
(4)若第③行连续三个数的和恰为﹣192,直接写出这三个数分别为 .
【考点8】探索规律——图形变化问题
【例8】(2019秋•海州区校级期中)列代数式表示
(1)某商品售价为a元,打八折后又降价20元,则现价为 (16a﹣20) 元.
(2)如图,搭一个三角形需要3根火柴,搭两个三角形需要5根火柴,搭三个三角形需要7根火柴,…,按这个规律,搭n个这样的三角形的需要火柴棒根数为 2n+1 .
(3)用代数式表示:①a与b的差的平方: (a﹣b)2 ;②a的立方与﹣1的和 a3﹣1 .
【变式8.1】(2022秋•安徽期中)(规律探索)用同样大小的两种不同颜色的正方形纸片,按如图方式拼成长方形:
第(1)个图形中有2张正方形纸片;
第(2)个图形中有2(1+2)=6=2×3张正方形纸片;
第(3)个图形中有2(1+2+3)=12=3×4张正方形纸片;
第(4)个图形中有2(1+2+3+4)=20=4×5张正方形纸片.
请你观察上述图形与算式,完成下列问题:
(规律归纳)
(1)第(6)个图形中有 张正方形纸片(直接写出结果);
(2)根据上面的发现我们可以猜想:1+2+3+…+n= (用含n的代数式表示);
(3)(规律应用)根据你的发现计算:121+122+123+…+400.
【变式8.2】(2022秋•霞浦县期中)用火柴棒按如图的方式搭图形.
(1)按图示规律完成下表:
(2)按照这种方式搭下去,搭第n个图形需要 根火柴棒.(用含n的代数式表示)
(3)小静同学说她按这种方式搭出来的一个图形用了200根火柴棒,你认为可能吗?如果可能,那么是第几个图形?如果不可能,请说明理由.
【变式8.3】(2022秋•无为市期中)如图,利用黑白两种颜色的五边形组成的图案,根据图案组成的规律回答下列问题:
(1)图案④中黑色五边形有 个,白色五边形有 个;
(2)图案n中黑色五边形有 个,白色五边形有 个;(用含n的式子表示)
(3)图案n中的白色五边形可能为2022个吗?若可能,请求出n的值;若不可能,请说明理由.a
2
﹣1
a2
(a)2
产品种类
每天工人数(人)
每天产量(件)
普通款
升级款
一次性购物
优惠办法
少于200元
不予优惠
低于500元但不低于200元
八折优惠
500元或超过500元
其中500元部分给予八折优惠,
超过500元部分给予七折优惠
图形
1
2
3
4
5
…
火柴棒根数
5
9
13
…
相关试卷
这是一份人教版数学七年级上册期末专题训练专题01 绝对值(八大考点)专题讲练(2份,原卷版+解析版),文件包含人教版数学七年级上册期末专题训练专题01绝对值八大考点专题讲练原卷版doc、人教版数学七年级上册期末专题训练专题01绝对值八大考点专题讲练解析版doc等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
这是一份人教版数学七年级上册期末拓展训练专题1.6线段与角的计算十二大核心考点精讲精练(2份,原卷版+解析版),文件包含人教版数学七年级上册期末拓展训练专题16线段与角的计算十二大核心考点精讲精练原卷版doc、人教版数学七年级上册期末拓展训练专题16线段与角的计算十二大核心考点精讲精练解析版doc等2份试卷配套教学资源,其中试卷共66页, 欢迎下载使用。
这是一份人教版数学七年级上册期末拓展训练专题1.5一元一次方程的应用14大类型热门考点精讲精练(2份,原卷版+解析版),文件包含人教版数学七年级上册期末拓展训练专题15一元一次方程的应用14大类型热门考点精讲精练原卷版doc、人教版数学七年级上册期末拓展训练专题15一元一次方程的应用14大类型热门考点精讲精练解析版doc等2份试卷配套教学资源,其中试卷共72页, 欢迎下载使用。