所属成套资源:沪教版(2020)数学必修第二册同步课件
沪教版(2020)必修第二册第6章 三角6.2 常用三角公式1两角和与差的正弦、余弦、正切公式评优课ppt课件
展开
这是一份沪教版(2020)必修第二册第6章 三角6.2 常用三角公式1两角和与差的正弦、余弦、正切公式评优课ppt课件,共18页。PPT课件主要包含了简记作,求角β等内容,欢迎下载使用。
我们在学习对数时知道 , 对于正实数a 、 b, 一般lg( a+ b ) ≠lga +lgb, 但可以用 a、 b 的对数来表示 ab或 (b≠0 ) 的对数 ,并可由此化简很多涉及对数的表达式 . 类似地 , 一般 sin ( α + β ) ≠sin α +sin β 及 cos ( α - β ) ≠cos α -cos β . 本节中 , 我们要学习两个角的和与差的三角公式 , 即学习如何用 α 、 β 的正弦 、 余弦及正切来表示 α ± β 的正弦 、 余弦及正切 , 并在此基础上学习如何运用这组公式及其推论来化简有关的三角表达式 , 为后面用三角知识解决各种具体问题做好准备
我们先推导两角差 ( α - β ) 的余弦公式 .设 α 、 β 为任意给定的两个角 , 把它们的顶点置于平面直角坐标系的原点 O , 始边都与 x轴的正半轴重合 , 而它们的终边分别与单位圆相交于 A、B两点 ( 图 6-2-1 ) . 点 A 、B的坐标分别为 A ( cos α , sin α )、 B( cos β , sin β )
下面考虑角 ( α - β ) 的余弦 . 为此把角 α 、 β 的终边 OA 及OB都绕原点O 旋转 - β 角 , 它们分别交单位圆于点 A′ 及 B′( 图 6-2-2 ) . 由于都转动了 - β 角 , 因此 α - β 也可以是一个以射线 OB′ 为始边 、 以射线 OA′ 为终边的角 , 而点 A′ 的坐标是( cos ( α - β ), sin ( α - β )), 点 B′ 的坐标是 ( 1 , 0 ) .
根据两点间的距离公式 , 在图 6-2-1 中 , 有
而在图 6-2-2 中 , 有
因为将射线 OA、OB同时绕原点O旋转 - β 角 , 就分别得到射线 OA′ 、 OB′ , 所以| AB |=| A′B′ | ,
从而得到2-2cos α cos β -2sin α sin β =2-2cos ( α - β ),即cos ( α - β ) =cos α cos β +sin α sin β
这个式子对任意给定的角 α 及 β 都成立 , 称为两角差的余弦公式 .
在两角差的余弦公式中 , 用 - β 代换 β , 就可得到两角和的余弦公式 :cos ( α + β ) =cos α cos ( - β ) +sin α sin ( - β )=cos α cos β -sin α sin β .这样 , 我们就得到 两角和与差的余弦公式cos ( α + β ) =cos α cos β -sin α sin β ,cos ( α - β ) =cos α cos β +sin α sin β
例 1 利用两角和与差的余弦公式 , 求 cos75° 和 cos15°的值 .
解 cos75°=cos ( 45°+30° )=cos45°cos30°-sin45°sin30°=
cos15°=cos ( 45°-30° )=cos45°cos30°+sin45°sin30°=
于是 cos ( α - β ) =cos α cos β +sin α sin β
例 3 若 α 、 β 为锐角 ,
练习 6. 2 ( 1)
1. 化简 :( 1 ) cos ( 22°- x ) cos ( 23°+ x ) -sin ( 22°- x ) sin ( 23°+ x );
1、cs 56°cs 26°+sin 56°cs 64°的值为( )
【答案】C;【解析】原式=cs 56°cs 26°+sin 56°sin 26°=cs(56°-26°)=cs 30°=
3、cs(α-35°)cs(α+25°)+sin(α-35°)sin(α+25°)=_______
【解析】原式=cs[(α-35°)-(α+25°)]=cs(-35°-25°)=cs(-60°)=cs 60°=
4、求值:(1)sin 20°cs 40°+cs 20°sin 40°=________;
【解析】sin 20°cs 40°+cs 20°sin 40°=sin(20°+40°)=sin 60°=
5、已知α,β为锐角,且cs α=
, cs(α+β)=- ,求:csβ的值;
相关课件
这是一份高中数学沪教版(2020)必修第二册1两角和与差的正弦、余弦、正切公式公开课课件ppt,共15页。PPT课件主要包含了两角和与差的正切公式,两角和与差的正弦公式,知识回顾,于是有,cosB=,所以原式成立,把下列各式化为,的形式,解析1等内容,欢迎下载使用。
这是一份沪教版(2020)必修第二册第6章 三角6.2 常用三角公式1两角和与差的正弦、余弦、正切公式一等奖ppt课件,共1页。
这是一份沪教版(2020)必修第二册1两角和与差的正弦、余弦、正切公式完整版教学ppt课件,共1页。