终身会员
搜索
    上传资料 赚现金

    2025年中考数学一轮复习题型分类练习第14讲 二次函数的应用(2份,原卷版+解析版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      2025年中考数学一轮复习题型分类练习第14讲 二次函数的应用(原卷版).docx
    • 解析
      2025年中考数学一轮复习题型分类练习第14讲 二次函数的应用(解析版).docx
    2025年中考数学一轮复习题型分类练习第14讲 二次函数的应用(原卷版)第1页
    2025年中考数学一轮复习题型分类练习第14讲 二次函数的应用(原卷版)第2页
    2025年中考数学一轮复习题型分类练习第14讲 二次函数的应用(原卷版)第3页
    2025年中考数学一轮复习题型分类练习第14讲 二次函数的应用(解析版)第1页
    2025年中考数学一轮复习题型分类练习第14讲 二次函数的应用(解析版)第2页
    2025年中考数学一轮复习题型分类练习第14讲 二次函数的应用(解析版)第3页
    还剩30页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025年中考数学一轮复习题型分类练习第14讲 二次函数的应用(2份,原卷版+解析版)

    展开

    这是一份2025年中考数学一轮复习题型分类练习第14讲 二次函数的应用(2份,原卷版+解析版),文件包含2025年中考数学一轮复习题型分类练习第14讲二次函数的应用原卷版docx、2025年中考数学一轮复习题型分类练习第14讲二次函数的应用解析版docx等2份试卷配套教学资源,其中试卷共183页, 欢迎下载使用。


    TOC \ "1-3" \n \h \z \u
    \l "_Tc155192127" 题型01 最大利润/销量问题
    \l "_Tc155192128" 题型02 方案选择问题
    \l "_Tc155192129" 题型03 拱桥问题
    \l "_Tc155192130" 题型04 隧道问题
    \l "_Tc155192131" 题型05 空中跳跃轨迹问题
    \l "_Tc155192132" 题型06 球类飞行轨迹
    \l "_Tc155192133" 题型07 喷泉问题
    \l "_Tc155192134" 题型08 图形问题
    \l "_Tc155192135" 题型09 图形运动问题
    \l "_Tc155192136" 题型10 二次函数综合问题-线段、周长问题
    \l "_Tc155192137" 题型11 二次函数综合问题-面积周长问题
    \l "_Tc155192138" 题型12 二次函数综合问题-角度问题
    \l "_Tc155192139" 题型13 二次函数综合问题-特殊三角形问题
    \l "_Tc155192140" 题型14 二次函数综合问题-特殊四边形问题
    \l "_Tc155192142"
    题型01 最大利润/销量问题
    1.(2022·山东青岛·统考中考真题)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.
    (1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;
    (2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?
    2.(2022·四川广元·统考中考真题)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.
    (1)科技类图书与文学类图书的单价分别为多少元?
    (2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?
    3.(2021·贵州遵义·统考中考真题)为增加农民收入,助力乡村振兴.某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8≤x≤40)满足的函数图象如图所示.

    (1)根据图象信息,求y与x的函数关系式;
    (2)求五一期间销售草莓获得的最大利润.
    题型02 方案选择问题
    4.(2023·安徽合肥·统考三模)为响应政府巩固脱贫成果的号召,某商场与生产水果的脱贫乡镇签订支助协议,每月向该乡镇购进甲、乙两种水果进行销售,根据经验可知:销售甲种水果每吨可获利0.4万元,销售乙种水果获利如下表所示:
    (1)分别求销售甲、乙两种水果获利y1(万元)、y2(万元)与购进水果数量x(吨)的函数关系式;
    (2)若只允许商场购进并销售一种水果,选择哪种水果获利更高?
    (3)支助协议中约定,商场每个月向乡镇购进甲、乙两种水果的数量分别为m、n吨,且m,n满足n=20-12m2,请帮忙商场设计可获得的最大利润的进货方案.
    5.(2023·山东潍坊·统考二模)2023年国际风筝会期间,某经销商准备采购一批风筝,已知用20000元采购A型风筝的只数是用8000元采购B型风筝的只数的2倍,一只A型风筝的进价比一只B型风筝的进价多20元.
    (1)求一只A,B型风筝的进价分别为多少元?
    (2)经市场调查发现:A型风筝售价的一半与A型风筝销量的和总是等于130,B型风筝的售价为120元/只.该经销商计划购进A,B型风筝共300只,其中A型风筝m50≤m≤150只,若两种风筝能全部售出,求销售这批风筝的最大利润,并写出此时的采购方案.
    6.(2020·山西太原·统考模拟预测)垃圾分类作为一个公共管理的综合系统工程,需要社会各个方面共同发力.洛阳市某超市计划定制一款家用分类垃圾桶,独家经销,生产厂家给出如下定制方案:不收设计费,定制不超过200套时.每套费用60元;超过200套后,超出的部分8折优惠.已知该超市定制这款垃圾桶的平均费用为56元1套
    (1)该超市定制了这款垃圾桶多少套?
    (2)超市经过市场调研发现:当此款垃圾桶售价定为80/套时,平均每天可售出20套;售价每降低1元.平均每天可多售出2套,售价下降多少元时.可使该超市平均每天销售此款垃圾桶的利润最大?
    7.(2023·江苏南通·统考一模)某商家购进一批产品,成本为10元/件,现有线上和线下两种销售方式,售价均为x元/件(10(1)求y与x的函数关系式;
    (2)求当售价为多少元时,线上销售利润与线下销售利润相等;
    (3)若商家准备从线上和线下两种销售方式中选一种,怎样选择才能使所获利润较大.
    题型03 拱桥问题
    8.(2023·陕西西安·陕西师大附中校考一模)如图,有一座抛物线型拱桥,在正常水位时水面宽AB=20m,当水位上升3m时,水面宽CD=10m.
    (1)按如图所示的直角坐标系,求此抛物线的函数表达式;
    (2)有一条船以5km/h的速度向此桥径直驶来,当船距离此桥35km,桥下水位正好在AB处,之后水位每小时上涨0.25m,当水位达到CD 处时,将禁止船只通行.如果该船的速度不变继续向此桥行驶35km时,水面宽是多少?它能否安全通过此桥?
    9.(2023·北京房山·统考一模)如图1,某公园在入园处搭建了一道“气球拱门”,拱门两端落在地面上.若将拱门看作抛物线的一部分,建立如图2所示的平面直角坐标系.拱门上的点距地面的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x-h)2+k(a<0).
    (1)拱门上的点的水平距离x与竖直高度y的几组数据如下:
    根据上述数据,直接写出“门高”(拱门的最高点到地面的距离),并求出拱门上的点满足的函数关系y=a(x-h)2+k(a<0).
    (2)一段时间后,公园重新维修拱门.新拱门上的点距地面的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=-0.288(x-5)2+7.2,若记“原拱门”的跨度(跨度为拱门底部两个端点间的距离)为d1,“新拱门”的跨度为d2,则d1__________d2(填“>”、“=”或“<”).
    10.(2023·广东佛山·校考三模)古往今来,桥给人们的生活带来便利,解决跨水或者越谷的交通,便于运输工具或行人在桥上畅通无阻,中国桥梁的桥拱线大多采用圆弧形、抛物线形和悬链形,坐落在河北省赵县汶河上的赵州桥建于隋朝,距今已有约1400年的历史,是当今世界上现存最早、保存最完整的古代敝肩石拱桥,赵州桥的主桥拱便是圆弧形.
    (1)某桥A主桥拱是圆弧形(如图①中ABC),已知跨度AC=40m,拱高BD=10m,则这条桥主桥拱的半径是______m;
    (2)某桥B的主桥拱是抛物线形(如图②),若水面宽MN=10m,拱顶P(抛物线顶点)距离水面4m,求桥拱抛物线的解析式;
    (3)如图③,某时桥A和桥B的桥下水位均上升了2m,求此时两桥的水面宽度.
    题型04 隧道问题
    11.(2022·北京通州·统考一模)如图1是某条公路的一个单向隧道的横断面.经测量,两侧墙AD和与路面AB垂直,隧道内侧宽AB=4米.为了确保隧道的安全通行,工程人员在路面AB上取点E,测量点E到墙面AD的距离和到隧道顶面的距离EF.设AE=x米,EF=y米.通过取点、测量,工程人员得到了x与y的几组值,如下表:
    (1)隧道顶面到路面AB的最大高度为______米;
    (2)请你帮助工程人员建立平面直角坐标系,描出上表中各对对应值为坐标的点,画出可以表示隧道顶面的图象.
    (3)今有宽为2.4米,高为3米的货车准备在隧道中间通过(如图2).根据隧道通行标准,其车厢最高点到隧道顶面的距离应大于0.5米.结合所画图象,请判断该货车是否安全通过:______(填写“是”或“否”).
    12.(2023·河南信阳·二模)2023年3月15日新晋高速全线通车,它把山西往河南路程由2小时缩短为1小时前期规划开挖一条双向四车道隧道时,王师傅想把入口设计成抛物线形状(如图),入口底宽AB为16cm,入口最高处OC为12.8米.
    (1)求抛物线解析式;
    (2)王师傅实地考察后,发现施工难度大,有人建议抛物线的形状不变,将隧道入口往左平移2m,最高处降为9.8米,求平移后的抛物线解析式;
    (3)双向四车道的地面宽至少要15米,则(2)中的建议是否符合要求?
    题型05 空中跳跃轨迹问题
    13.(2022·河北保定·统考二模)如图,某跳水运动员进行10米跳台跳水训练,水面边缘点E的坐标为-32,-10.运动员(将运动员看成一点)在空中运动的路线是经过原点O的抛物线.在跳某个规定动作时,运动员在空中最高处A点的坐标为1,54,正常情况下,运动员在距水面高度5米以前,必须完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误.运动员入水后,运动路线为另一条抛物线.

    (1)求运动员在空中运动时对应抛物线的解析式并求出入水处B点的坐标;
    (2)若运动员在空中调整好入水姿势时,恰好距点E的水平距离为5米,问该运动员此次跳水会不会失误?通过计算说明理由;
    (3)在该运动员入水点的正前方有M,N两点,且EM=212,EN=272,该运动员入水后运动路线对应的抛物线解析式为y=a(x-h)2+k,且顶点C距水面4米,若该运动员出水点D在MN之间(包括M,N两点),请直接写出a的取值范围.
    14.(2023·山东青岛·统考二模)跳台滑雪简称:“跳雪”,选手不借助任何外力,从起滑台P处起滑,在助滑道PE上加速,从跳台E处起跳,最后落在山坡MN或者水平地面上.运动员从P点起滑,沿滑道加速,到达高度OE=42m的E点后起跳,运动员在空中的运动轨迹是一条抛物线.建立如图所示平面直角坐标系,OM=38m,ON=114m,设MN所在直线关系式为y=kx+b.

    甲运动员起跳后,与跳台OE水平距离xm、竖直高度ym之间的几组对应数据如下:
    (1)求甲运动员空中运动轨迹抛物线的关系式;
    (2)运动员得分由距离得分+动作分+风速得分组成.
    距离得分:运动员着陆点到跳台OE水平距离为50m,即得到60分,每比50m远1米多得2分;反之,当运动员着陆点每比50m近1米扣2分.距离分计算采取“2舍3入法”,如60.2米计为60米,60.3米则计为60.5米.
    动作得分:由裁判根据运动员空中动作的优美程度打分.
    风速得分:由逆风或者顺风决定.
    甲运动员动作分、风速加分如下表:
    请你计算甲运动员本次比赛得分.
    15.(2023·河南开封·统考一模)某校开展“阳光体育”活动,如图①是学生在操场玩跳长绳游戏的场景,在跳长绳的过程中,绳甩到最高处时的形状是抛物线型,如图②所示是以点O为原点建立的平面直角坐标系(甲位于点O处,乙位于x轴的D处),正在甩绳的甲、乙两名同学握绳的手分别设为A点、B点,且AB的水平距离为6米,他们到地面的距离AO与BD均为0.9米,绳子甩到最高点C处时,最高点距地面的垂直距离为1.8米.
    (1)请求出该抛物线的解析式;
    (2)跳绳者小明的身高为1.7米,当绳子甩到最高处时,求小明站在距甲同学多远时,绳子刚好过他的头顶上方;
    (3)经测定,多人跳长绳时,参与者同方向站立时的脚跟之间距离不小于0.4米时才能安全起跳,小明与其他3位同学一起跳绳,如果这3名同学与小明身高相同,通过计算说明他们是否可以安全起跳?
    题型06 球类飞行轨迹
    16.(2023·陕西西安·交大附中分校校考一模)卡塔尔世界杯完美落幕.在一场比赛中,球员甲在离对方球门30米处的O点起脚吊射(把球高高地挑过守门员的头顶,射入球门),假如球飞行的路线是一条抛物线,在离球门14米时,足球达到最大高度8米.如图所示,以球员甲所在位置O点为原点,球员甲与对方球门所在直线为x轴,建立平面直角坐标系.
    (1)求满足条件的抛物线的函数表达式;
    (2)如果葡萄牙球员C罗站在球员甲前3米处,C罗跳起后最高能达到2.88米,那么C罗能否在空中截住这次吊射?
    17.(2022·山东青岛·统考一模)手榴弹作为一种威力较大,体积较小,方便携带的武器,在战争中能发挥重要作用,然而想把手榴弹扔远,并不是一件容易的事.军训中,借助小山坡的有利地势,小刚在教官的指导下用模拟弹进行一次试投:如图所示,把小刚投出的手榴弹的运动路线看做一条抛物线,手榴弹飞行的最大高度为12米,此时它的水平飞行距离为6米,山坡OA的坡度为1:3.
    (1)求这条抛物线的表达式;
    (2)山坡上A处的水平距离OE为9米,A处有一棵树,树高5米,则小刚投出的手榴弹能否越过这棵树?请说明理由;
    (3)求飞行的过程中手榴弹离山坡的最大高度是多少米.
    18.(2022·浙江台州·统考二模)鹰眼系统能够追踪、记录和预测球的轨迹,如图分别为足球比赛中某一时刻的鹰眼系统预测画面(如图1)和截面示意图(如图2),攻球员位于点O,守门员位于点A,OA的延长线与球门线交于点B,且点A,B均在足球轨迹正下方,足球的飞行轨迹可看成抛物线.已知OB=28m,AB=8m,足球飞行的水平速度为15m/s,水平距离s(水平距离=水平速度×时间)与离地高度h的鹰眼数据如下表:
    (1)根据表中数据预测足球落地时,s= m;
    (2)求h关于s 的函数解析式;
    (3)守门员在攻球员射门瞬间就作出防守反应,当守门员位于足球正下方时,足球离地高度不大于守门员的最大防守高度视为防守成功.已知守门员面对足球后退过程中速度为2.5m/s,最大防守高度为2.5m;背对足球向球门前进过程中最大防守高度为1.8m.
    ①若守门员选择面对足球后退,能否成功防守?试计算加以说明;
    ②若守门员背对足球向球门前进并成功防守,求此过程守门员的最小速度.
    19.(2023·河北衡水·统考二模)如图,春节期间,某同学燃放一种手持烟花,烟花弹的飞行路径是一段抛物线,喷射出时距地面2米,在与他水平距离是20米,达到最大高度18米时爆炸.若是哑弹(在空中没有爆炸的烟花弹),会继续按原有的抛物线飞落,在他的正前方33米处有一栋高15米的居民楼(截面矩形ABCD与抛物线在同一平面上).
    (1)求抛物线的解析式(不必写出x的取值范围),请通过计算说明若是哑弹,会落在几层居民楼的外墙或窗户上(每层楼高按3米计算);
    (2)该同学沿x轴负半轴至少后退几米,才能避免哑弹落在居民楼的外墙或窗户上?(结果保留根号)
    (3)若居民楼宽AB=CD=12m,该同学沿x轴向居民楼走n米,可使哑弹落在楼顶CD上(不含点C,D),直接写出n的取值范围.(结果保留根号)
    20.(2023·北京海淀·统考二模)小明发现某乒乓球发球器有“直发式”与“间发式”两种模式.在“直发式”模式下,球从发球器出口到第一次接触台面的运动轨迹近似为一条抛物线;在“间发式”模式下,球从发球器出口到第一次接触台面的运动轨迹近似为一条直线,球第一次接触台面到第二次接触台面的运动轨迹近似为一条抛物线.如图1和图2分别建立平面直角坐标系xOy.

    通过测量得到球距离台面高度y(单位:dm)与球距离发球器出口的水平距离x(单位:dm)的相关数据,如下表所示:
    表1 直发式
    表2 间发式
    根据以上信息,回答问题:
    (1)表格中m=________,n=________;
    (2)求“直发式”模式下,球第一次接触台面前的运动轨迹的解析式;
    (3)若“直发式”模式下球第一次接触台面时距离出球点的水平距离为d1“间发式”模式下球第二次接触台面时距离出球点的水平距离为d2,则d1________d2(填“>”“=”或“<”).
    题型07 喷泉问题
    21.(2022·北京西城·统考一模)要修建一个圆形喷水池,在池中心竖直安装一根水管,水管的顶端安一个喷水头,记喷出的水与池中心的水平距离为x m,距地面的高度为y m.测量得到如下数值:
    小腾根据学习函数的经验,发现y是x的函数,并对y随x的变化而变化的规律进行了探究.
    下面是小腾的探究过程,请补充完整:
    (1)在平面直角坐标系xOy中,描出表中各组数值所对应的点x,y,并画出函数的图象;
    (2)结合函数图象,出水口距地面的高度为_______m,水达到最高点时与池中心的水平距离约为_______m(结果保留小数点后两位);
    (3)为了使水柱落地点与池中心的距离不超过3.2m,如果只调整水管的高度,其他条件不变,结合函数图象,估计出水口至少需要_______(填“升高”或“降低”)_______m(结果保留小数点后两位).
    22.(2023·安徽亳州·统考二模)如图1,灌溉车沿着平行于绿化带底部边线的方向行驶,为绿化带浇水.喷水口H离地竖直高度为hm,如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象,把绿化带横截面抽象为矩形DEFG.下边缘抛物线是由上边缘抛物线向左平移得到的,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到绿化带的距离OD为d m.当OH=1.5m,DE=3m,EF=0.5m时,解答下列问题:
    (1)①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;
    ②求出点B的坐标;
    (2)要使灌溉车行驶时喷出的水能浇灌到整个绿化带,试求出d的取值范围.
    题型08 图形问题
    23.(2022·湖南湘潭·统考中考真题)为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长12m)和21m长的篱笆墙,围成Ⅰ、Ⅱ两块矩形劳动实践基地.某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:
    (1)方案一:如图①,全部利用围墙的长度,但要在Ⅰ区中留一个宽度AE=1m的水池且需保证总种植面积为32m2,试分别确定CG、DG的长;
    (2)方案二:如图②,使围成的两块矩形总种植面积最大,请问BC应设计为多长?此时最大面积为多少?
    24.(2020·山东日照·中考真题)如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).
    (1)若四块矩形花圃的面积相等,求证:AE=3BE;
    (2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.
    25.(2023·广东肇庆·统考一模)如图,抛物线y=ax2+3x+c(a≠0)与x轴交于点A(-2,0)和点B,与y轴交于点C(0,8),点P为直线BC上方抛物线上的动点,连接CP,PB,直线BC与抛物线的对称轴l交于点E.
    (1)求抛物线的解析式;
    (2)求直线BC的解析式;
    (3)求△BCP的面积最大值.
    26.(2023下·湖北武汉·九年级校联考期中)春回大地,万物复苏,又是一年花季到.某花圃基地计划将如图所示的一块长40 m,宽20 m的矩形空地划分成五块小矩形区域.其中一块正方形空地为育苗区,另一块空地为活动区,其余空地为种植区,分别种植A,B,C三种花卉.活动区一边与育苗区等宽,另一边长是10 m.A,B,C三种花卉每平方米的产值分别是2百元、3百元、4百元.
    (1)设育苗区的边长为x m,用含x的代数式表示下列各量:花卉A的种植面积是_____m2,花卉B的种植面积是______m2,花卉C的种植面积是_______m2.
    (2)育苗区的边长为多少时,A,B两种花卉的总产值相等?
    (3)若花卉A与B的种植面积之和不超过560m2 ,求A,B,C三种花卉的总产值之和的最大值.
    题型09 图形运动问题
    27.(2023·江苏苏州·统考一模)如图,在Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.点P从点A出发,以1cm/s的速度沿AB运动:同时,点Q从点B出发,以2cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设动点运动的时间为t(s).
    (1)当t为何值时,△PBQ的面积为2cm2;
    (2)求四边形PQCA面积的最小值.
    28.(2021下·吉林·九年级统考阶段练习)如图,在△ABC中,∠C=90°,AC=BC=4,P,Q两点同时从C出发,点P 以每秒2个单位长度的速度沿CB向终点B运动;点Q 以每秒1个单位长度的速度沿CA向终点A运动,以CP,CQ为邻边作矩形CPMQ.当点P停止运动时,点Q继续向终点A运动.设点Q的运动时间为t秒.
    (1)在点P的运动过程中,CQ=________,BP=________(用含t的代数式表示);
    (2)当点M落在AB边上时,t =_________s;
    (3)设矩形CPMQ与△ABC重合部分图形的面积为S,求S与t之间的函数关系式;
    29.(2023·山东青岛·统考一模)如图,在矩形ABCD中,AB=3,BC=4,动点P从点D出发沿DA向终点A运动,同时动点Q从点A出发沿对角线AC向终点C运动.过点P作PE∥DC,交AC于点E,动点P、Q的运动速度是每秒1个单位长度,当点P运动到点A时,P、Q两点同时停止运动.设运动时间为ts0≤t≤4,解答下列问题:
    (1)当E、Q重合时,求t的值;
    (2)设四边形BQPE的面积为S,当线段PE在点Q右侧时,求出S与t之间的函数关系式;
    (3)当BE∥PQ时,求t的值;
    (4)是否存在这样的点P和点Q,使P、Q、E为顶点的三角形是等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.
    30.(2023·吉林长春·校考模拟预测)如图在Rt△ABC中,∠C=90°,∠A=60°,AB=6cm.动点P从点A出发,以1cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交直线AC于点Q,以PQ为边向左侧作矩形PQMN,使QM=3PQ.设矩形PQMN与△ABC重叠部分图形的面积是S,点P的运动时间为t(s)(0
    (1)当点Q在边AC上时,求QM的长(用含t的代数式表示);
    (2)当点M在边BC上时,求t的值;
    (3)求S与t之间的函数关系式.
    (4)连接BQ,沿直线BQ将矩形PQMN剪开的两部分可以拼成一个无缝隙也不重叠的三角形时,直接写出t的值.
    题型10 二次函数综合问题-线段、周长问题
    31.(2022·山东东营·统考中考真题)如图,抛物线y=ax2+bx-3(a≠0)与x轴交于点A(-1,0),点B(3,0),与y轴交于点C.
    (1)求抛物线的表达式;
    (2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;
    (3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.
    32.(2022·辽宁朝阳·统考中考真题)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,﹣3),连接BC.
    (1)求抛物线的解析式及点B的坐标.
    (2)如图,点P为线段BC上的一个动点(点P不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,求线段PQ长度的最大值.
    (3)动点P以每秒2个单位长度的速度在线段BC上由点C向点B运动,同时动点M以每秒1个单位长度的速度在线段BO上由点B向点O运动,在平面内是否存在点N,使得以点P,M,B,N为顶点的四边形是菱形?若存在,请直接写出符合条件的点N的坐标;若不存在,请说明理由.
    33.(2021·山东东营·统考中考真题)如图,抛物线y=-12x2+bx+c与x轴交于A、B两点,与y轴交于点C,直线y=-12x+2过B、C两点,连接AC.
    (1)求抛物线的解析式;
    (2)求证:△AOC∽△ACB;
    (3)点M3,2是抛物线上的一点,点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为抛物线对称轴上一动点,当线段DE的长度最大时,求PD+PM的最小值.
    题型11 二次函数综合问题-面积周长问题
    34.(2022·广东·统考中考真题)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A1,0,AB=4,点P为线段AB上的动点,过P作PQ//BC交AC于点Q.
    (1)求该抛物线的解析式;
    (2)求△CPQ面积的最大值,并求此时P点坐标.
    35.(2022·四川广安·统考中考真题)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,-4),点C坐标为(2,0).
    (1)求此抛物线的函数解析式.
    (2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.
    (3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.
    36.(2022·福建·统考模拟预测)在平面直角坐标系xOy中,已知抛物线y=ax2+bx经过A(4,0),B(1,4)两点.P是抛物线上一点,且在直线AB的上方.
    (1)求抛物线的解析式;
    (2)若△OAB面积是△PAB面积的2倍,求点P的坐标;
    (3)如图,OP交AB于点C,PD∥BO交AB于点D.记△CDP,△CPB,△CBO的面积分别为S1,S2,S3.判断S1S2+S2S3是否存在最大值.若存在,求出最大值;若不存在,请说明理由.
    题型12 二次函数综合问题-角度问题
    37.(2023·江苏苏州·统考一模)如图,二次函数y=-14x2+12m-1x+m(m是常数,且m>0)的图象与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,动点P在对称轴l上,连接AC、BC、PA、PC.
    (1)求点A、B、C的坐标(用数字或含m的式子表示);
    (2)当PA+PC的最小值等于45时,求m的值及此时点P的坐标;
    (3)当m取(2)中的值时,若∠APC=2∠ABC,请直接写出点P的坐标.
    38.(2022·广东深圳·深圳中学校考一模)如图,已知抛物线y=-13x2+bx+c交x轴于A-3,0,B4,0两点,交y轴于点C,点P是抛物线上一点,连接AC、BC.
    (1)求抛物线的表达式;
    (2)连接OP,BP,若S△BOP=2S△AOC,求点P的坐标;
    (3)在抛物线的对称轴上是否存在点Q,使得∠QBA=75°?若存在,直接写出点Q的坐标;若不存在,请说明理由.
    题型13 二次函数综合问题-特殊三角形问题
    39.(2021上·云南红河·九年级校考期中)如图,抛物线y=-x2+bx+c与x轴交于A,B两点,y与轴交于点C,抛物线的对称轴交x轴于点D.已知A(-1 ,0),C(0,3).
    (1)求抛物线的解析式;
    (2)在抛物线的对称轴上有一点M,使得MA+MC的值最小,求此点M的坐标;
    (3)在抛物线的对称轴上是否存在P点,使△PCD是等腰三角形,如果存在,求出点P的坐标,如果不存在,请说明理由.
    40.(2020·内蒙古通辽·中考真题)如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于点A,B,与y轴交于点C,且直线y=x-6过点B,与y轴交于点D,点C与点D关于x轴对称.点P是线段OB上一动点,过点P作x轴的垂线交抛物线于点M,交直线BD于点N.

    (1)求抛物线的函数解析式;
    (2)当△MDB的面积最大时,求点P的坐标;
    (3)在(2)的条件下,在y轴上是否存在点Q,使得以Q,M,N三点为顶点的三角形是直角三角形,若存在,直接写出点Q的坐标;若不存在,说明理由.
    题型14 二次函数综合问题-特殊四边形问题
    41.(2022·四川眉山·中考真题)在平面直角坐标系中,抛物线y=-x2-4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为(-5,0).
    (1)求点C的坐标;
    (2)如图1,若点P是第二象限内抛物线上一动点,求点P到直线AC距离的最大值;
    (3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
    42.(2023·重庆九龙坡·重庆市育才中学校考一模)如图,在平面直角坐标系中,抛物线y=12x2+bx+c与x轴交于A-1,0,B4,0,与y轴交于点C,连接BC,D为抛物线的顶点.
    (1)求该抛物线的解析式;
    (2)点P为直线BC下方抛物线上的一动点,过P作PE⊥BC于点E,过P作PF⊥x轴于点F,交直线BC于点G,求PE+PG的最大值,以及此时点P的坐标;
    (3)将抛物线y=12x2+bx+c沿射线CB方向平移,平移后的图象经过点H2,-1,点M为D的对应点,平移后的抛物线与y轴交于点N,点Q为平移后的抛物线对称轴上的一点,且点Q在第一象限.在平面直角坐标系中确定点R,使得以点M,N,Q,R为顶点的四边形为菱形,请写出所有符合条件的点R的坐标,并写出求解点R的坐标的其中一种情况的过程.
    43.(2023·重庆江北·校考一模)如图,抛物线y=24x2+bx+c与x轴交于点A-2,0、B,与y轴交于点C,抛物线的对称轴为直线x=2,点D是抛物线的顶点.
    (1)求抛物线的解析式;
    (2)过点A作AF⊥AD交对称轴于点F,在直线AF下方对称轴右侧的抛物线上有一动点P,过点P作PQ∥y轴交直线AF于点Q,过点P作PE⊥DF交于点E,求PQ+PE最大值及此时点P的坐标;
    (3)将原抛物线沿着x轴正方向平移,使得新抛物线经过原点,点M是新抛物线上一点,点N是平面直角坐标系内一点,是否存在以B、C、M、N为顶点的四边形是以BC为对角线的菱形,若存在,求所有符合条件的点N的坐标.
    44.(2022·辽宁丹东·统考中考真题)如图1,抛物线y=ax2+x+c(a≠0)与x轴交于A(﹣2,0),B(6,0)两点,与y轴交于点C,点P是第一象限内抛物线上的一个动点,过点P作PD⊥x轴,垂足为D,PD交直线BC于点E,设点P的横坐标为m.
    (1)求抛物线的表达式;
    (2)设线段PE的长度为h,请用含有m的代数式表示h;
    (3)如图2,过点P作PF⊥CE,垂足为F,当CF=EF时,请求出m的值;
    (4)如图3,连接CP,当四边形OCPD是矩形时,在抛物线的对称轴上存在点Q,使原点O关于直线CQ的对称点O′恰好落在该矩形对角线所在的直线上,请直接写出满足条件的点Q的坐标.
    1.(2022·安徽·统考中考真题)如图1,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.
    (1)求此抛物线对应的函数表达式;
    (2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点P1,P4在x轴上,MN与矩形P1P2P3P4的一边平行且相等.栅栏总长l为图中粗线段P1P2,P2P3,P3P4,MN长度之和.请解决以下问题:
    (ⅰ)修建一个“”型栅栏,如图2,点P2,P3在抛物线AED上.设点P1的横坐标为m0(ⅱ)现修建一个总长为18的栅栏,有如图3所示的修建“”型或“”型栅型两种设计方案,请你从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).
    2.(2022·浙江台州·统考中考真题)如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).
    (1)若h=1.5,EF=0.5m;
    ①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;
    ②求下边缘抛物线与x轴的正半轴交点B的坐标;
    ③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围;
    (2)若EF=1m.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值.
    3.(2022·江苏淮安·统考中考真题)端午节前夕,某超市从厂家分两次购进A、B两种品牌的粽子,两次进货时,两种品牌粽子的进价不变.第一次购进A品牌粽子100袋和B品牌粽子150袋,总费用为7000元;第二次购进A品牌粽子180袋和B品牌粽子120袋,总费用为8100元.
    (1)求A、B两种品牌粽子每袋的进价各是多少元;
    (2)当B品牌粽子销售价为每袋54元时,每天可售出20袋,为了促销,该超市决定对B品牌粽子进行降价销售.经市场调研,若每袋的销售价每降低1元,则每天的销售量将增加5袋.当B品牌粽子每袋的销售价降低多少元时,每天售出B品牌粽子所获得的利润最大?最大利润是多少元?
    4.(2022·湖北荆州·统考中考真题)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y(万件)与售价x(元/件)之间满足函数关系式y=24-x,第一年除60万元外其他成本为8元/件.
    (1)求该产品第一年的利润w(万元)与售价x之间的函数关系式;
    (2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?
    5.(2022·湖北武汉·统考中考真题)在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70cm处.
    小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.
    小聪探究发现,黑球的运动速度v与运动时间t之间成一次函数关系,运动距离y与运动时间t之间成二次函数关系.
    (1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围)
    (2)当黑球减速后运动距离为64cm时,求它此时的运动速度;
    (3)若白球一直以2cm/s的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.
    6.(2021·山东青岛·统考中考真题)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽路空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度y1(米)与小钢球运动时间x(秒)之间的函数关系如图所示;小钢球离地面高度y2(米)与它的运动时间x(秒)之间的函数关系如图中抛物线所示.
    (1)直接写出y1与x之间的函数关系式;
    (2)求出y2与x之间的函数关系式;
    (3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?
    7.(2021·湖北武汉·统考中考真题)在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料开发了一种有机产品,A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg.生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.
    (1)求每盒产品的成本(成本=原料费+其他成本);
    (2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);
    (3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润.
    8.(2021·江苏扬州·统考中考真题)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:
    说明:①汽车数量为整数;
    ②月利润=月租车费-月维护费;
    ③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.
    在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:
    (1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;
    (2)求两公司月利润差的最大值;
    (3)甲公司热心公益事业,每租出1辆汽车捐出a元a>0给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.
    9.(2022·山东潍坊·中考真题)某市在盐碱地种植海水稻获得突破性进展,小亮和小莹到海水稻种植基地调研.小莹根据水稻年产量数据,分别在直角坐标系中描出表示2017-2021年①号田和②号田年产量情况的点(记2017年为第1年度,横轴表示年度,纵轴表示年产量),如下图.
    小亮认为,可以从y=kx+b(k>0) ,y=mx(m>0) ,y=−0.1x2+ax+c中选择适当的函数模型,模拟①号田和②号田的年产量变化趋势.
    (1)小莹认为不能选y=mx(m>0).你认同吗?请说明理由;
    (2)请从小亮提供的函数模型中,选择适当的模型分别模拟①号田和②号田的年产量变化趋势,并求出函数表达式;
    (3)根据(2)中你选择的函数模型,请预测①号田和②号田总年产量在哪一年最大?最大是多少?
    10.(2022·浙江金华·统考中考真题)“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬菜需求量y1(吨)关于售价x(元/千克)的函数图象可以看成抛物线,其表达式为y1=ax2+c,部分对应值如表:
    ②该蔬菜供给量y2(吨)关于售价x(元/千克)的函数表达式为y2=x-1,函数图象见图1.
    ③1~7月份该蔬菜售价x1(元/千克),成本x2(元/千克)关于月份t的函数表达式分别为x1=12t+2,x2=14t2-32t+3,函数图象见图2.
    请解答下列问题:
    (1)求a,c的值.
    (2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.
    (3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.
    11.(2021·湖北随州·统考中考真题)如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A处,另一端固定在离地面高2米的墙体B处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y(米)与其离墙体A的水平距离x(米)之间的关系满足y=-16x2+bx+c,现测得A,B两墙体之间的水平距离为6米.
    图2
    (1)直接写出b,c的值;
    (2)求大棚的最高处到地面的距离;
    (3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为3724米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?
    12.(2022·山东青岛·统考中考真题)如图,在Rt△ABC中,∠ACB=90°,AB=5cm,BC=3cm,将△ABC绕点A按逆时针方向旋转90°得到△ADE,连接CD.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点A出发,沿AD方向匀速运动,速度为1cm/s.PQ交AC于点F,连接CP,EQ.设运动时间为t(s)(0(1)当EQ⊥AD时,求t的值;
    (2)设四边形PCDQ的面积为S(cm2),求S与t之间的函数关系式;
    (3)是否存在某一时刻t,使PQ∥CD?若存在,求出t的值;若不存在,请说明理由.
    13.(2022·浙江宁波·统考二模)如图1是一架菱形风筝,它的骨架由如图2的4条竹棒AC,BD,EF,GH组成,其中E,F,G,H分别是菱形ABCD四边的中点,现有一根长为80cm的竹棒,正好锯成风筝的四条骨架,设AC=xcm,菱形ABCD的面积为ycm2.
    (1)写出y关于x的函数关系式:
    (2)为了使风筝在空中有较好的稳定性,要求25cm≤AC≤43BD,那么当骨架AC的长为多少时,这风筝即菱形ABCD的面积最大?此时最大面积为多少?
    14.(2023·安徽合肥·校考模拟预测)某公园要在小广场上建造一个喷泉景观.在小广场中央O处垂直于地面安装一个高为1.25米的花形柱子OA,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上抛物线路径如图1所示.为使水流形状较为美观,设计成水流在距OA的水平距离为1米时达到最大高度,此时离地面2.25米.
    (1)以点O为原点建立如图2所示的平面直角坐标系,水流到OA水平距离为x米,水流喷出的高度为y米,求出在第一象限内的抛物线解析式(不要求写出自变量的取值范围);
    (2)张师傅正在喷泉景观内维修设备期间,喷水管意外喷水,但是身高1.76米的张师傅却没有被水淋到,此时他离花形柱子OA的距离为d米,求d的取值范围;
    (3)为了美观,在离花形柱子4米处的地面B、C处安装射灯,射灯射出的光线与地面成45∘角,如图3所示,光线交汇点P在花形柱子OA的正上方,其中光线BP所在的直线解析式为y=-x+4,求光线与抛物线水流之间的最小垂直距离.
    15.(2022·湖北随州·统考中考真题)2022年的冬奥会在北京举行,其中冬奥会吉祥物“冰墩墩”深受人们喜爱,多地出现了“一墩难求”的场面,某纪念品商店在开始售卖当天提供150个“冰墩墩”后很快就被抢购一空.该店决定让当天未购买到的顾客可通过预约在第二天优先购买,并且从第二天起,每天比前一天多供应m个(m为正整数)经过连续15天的销售统计,得到第x天(1≤x≤15,且x为正整数)的供应量y1(单位:个)和需求量y2(单位:个)的部分数据如下表,其中需求量y2与x满足某二次函数关系.(假设当天预约的顾客第二天都会购买,当天的需求量不包括前一天的预约数)
    (1)直接写出y1与x和y2与x的函数关系式;(不要求写出x的取值范围)
    (2)已知从第10天开始,有需求的顾客都不需要预约就能购买到(即前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量),求m的值;(参考数据:前9天的总需求量为2136个)
    (3)在第(2)问m取最小值的条件下,若每个“冰墩墩”售价为100元,求第4天与第12天的销售额.
    16.(2021·天津·统考中考真题)在平面直角坐标系中,O为原点,△OAB是等腰直角三角形,∠OBA=90°,BO=BA,顶点A4,0,点B在第一象限,矩形OCDE的顶点E-72,0,点C在y轴的正半轴上,点D在第二象限,射线DC经过点B.
    (Ⅰ)如图①,求点B的坐标;
    (Ⅱ)将矩形OCDE沿x轴向右平移,得到矩形O'C'D'E',点O,C,D,E的对应点分别为O',C',D',E',设OO'=t,矩形O'C'D'E'与△OAB重叠部分的面积为S.
    ①如图②,当点E'在x轴正半轴上,且矩形O'C'D'E'与△OAB重叠部分为四边形时,D'E'与OB相交于点F,试用含有t的式子表示S,并直接写出t的取值范围;
    ②当52≤t≤92时,求S的取值范围(直接写出结果即可).
    17.(2022·山东烟台·统考中考真题)如图,已知直线y=43x+4与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过A,C两点,且与x轴的另一个交点为B,对称轴为直线x=﹣1.
    (1)求抛物线的表达式;
    (2)D是第二象限内抛物线上的动点,设点D的横坐标为m,求四边形ABCD面积S的最大值及此时D点的坐标;
    (3)若点P在抛物线对称轴上,是否存在点P,Q,使以点A,C,P,Q为顶点的四边形是以AC为对角线的菱形?若存在,请求出P,Q两点的坐标;若不存在,请说明理由.
    18.(2022·山东济南·统考中考真题)抛物线y=ax2+114x-6与x轴交于At,0,B8,0两点,与y轴交于点C,直线y=kx-6经过点B.点P在抛物线上,设点P的横坐标为m.
    (1)求抛物线的表达式和t,k的值;
    (2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;
    (3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+12PQ的最大值.
    19.(2022·上海·统考中考真题)已知:y=12x2+bx+c经过点A-2,-1,B0,-3.
    (1)求函数解析式;
    (2)平移抛物线使得新顶点为Pm,n(m>0).
    ①倘若S△OPB=3,且在x=k的右侧,两抛物线都上升,求k的取值范围;
    ②P在原抛物线上,新抛物线与y轴交于Q,∠BPQ=120∘时,求P点坐标.
    20.(2022·山东菏泽·统考中考真题)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A-2,0、B8,0两点,与y轴交于点C0,4,连接AC、BC.
    (1)求抛物线的表达式;
    (2)将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,直接写出点D的坐标.并求出四边形OADC的面积;
    (3)点P是抛物线上的一动点,当∠PCB=∠ABC时,求点P的坐标.
    21.(2022·湖南衡阳·统考中考真题)如图,已知抛物线y=x2-x-2交x轴于A、B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.
    (1)写出图象W位于线段AB上方部分对应的函数关系式;
    (2)若直线y=-x+b与图象W有三个交点,请结合图象,直接写出b的值;
    (3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
    销售x(吨)
    3
    4
    5
    6
    7
    获利y(万元)
    0.9
    1.1
    1.3
    1.5
    1.7
    x(元/件)
    12
    13
    14
    15
    16
    y(件)
    1200
    1100
    1000
    900
    800
    水平距离xm
    2
    3
    6
    8
    10
    12
    竖直高度ym
    4
    5.4
    7.2
    6.4
    4
    0
    x(米)
    0
    0.5
    1.0
    1.5
    2.0
    2.5
    3.0
    3.5
    4.0
    y(米)
    3.00
    3.44
    3.76
    3.94
    3.99
    3.92
    3.78
    3.42
    3.00
    水平距离xm
    0
    10
    20
    30
    40
    竖直高度ym
    42
    48
    50
    48
    42
    距离分
    动作分
    风速加分
    50
    -2.5
    s/m

    9
    12
    15
    18
    21

    h/m

    4.2
    4.8
    5
    4.8
    4.2

    xdm
    0
    2
    4
    6
    8
    10
    16
    20

    ydm
    3.84
    3.96
    4
    3.96
    m
    3.64
    2.56
    1.44

    xdm
    0
    2
    4
    6
    8
    10
    12
    14
    16
    18

    ydm
    3.36
    n
    1.68
    0.84
    0
    1.40
    2.40
    3
    3.20
    3

    x/m
    0
    0.5
    1
    1.5
    2
    2.5
    3
    3.37
    y/m
    2.44
    3.15
    3.49
    3.45
    3.04
    2.25
    1.09
    0
    运动时间ts
    0
    1
    2
    3
    4
    运动速度vcm/s
    10
    9.5
    9
    8.5
    8
    运动距离ycm
    0
    9.75
    19
    27.75
    36
    甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.
    乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.
    售价x(元/千克)

    2.5
    3
    3.5
    4

    需求量y1(吨)

    7.75
    7.2
    6.55
    5.8

    第x天
    1
    2

    6

    11

    15
    供应量y1(个)
    150
    150+m

    150+5m

    150+10m

    150+14m
    需求量y2(个)
    220
    229

    245

    220

    164

    相关试卷

    2025年中考数学一轮复习题型分类练习第09讲 函数与平面直角坐标系(2份,原卷版+解析版):

    这是一份2025年中考数学一轮复习题型分类练习第09讲 函数与平面直角坐标系(2份,原卷版+解析版),文件包含2025年中考数学一轮复习题型分类练习第09讲函数与平面直角坐标系原卷版docx、2025年中考数学一轮复习题型分类练习第09讲函数与平面直角坐标系解析版docx等2份试卷配套教学资源,其中试卷共103页, 欢迎下载使用。

    2025年中考数学一轮复习题型分类练习第08讲 一元一次不等式(组)及其应用(2份,原卷版+解析版):

    这是一份2025年中考数学一轮复习题型分类练习第08讲 一元一次不等式(组)及其应用(2份,原卷版+解析版),文件包含2025年中考数学一轮复习题型分类练习第08讲一元一次不等式组及其应用原卷版docx、2025年中考数学一轮复习题型分类练习第08讲一元一次不等式组及其应用解析版docx等2份试卷配套教学资源,其中试卷共88页, 欢迎下载使用。

    2025年中考数学一轮复习题型分类练习第05讲 一次方程(组)及其应用(2份,原卷版+解析版):

    这是一份2025年中考数学一轮复习题型分类练习第05讲 一次方程(组)及其应用(2份,原卷版+解析版),文件包含2025年中考数学一轮复习题型分类练习第05讲一次方程组及其应用原卷版docx、2025年中考数学一轮复习题型分类练习第05讲一次方程组及其应用解析版docx等2份试卷配套教学资源,其中试卷共62页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2025年中考数学一轮复习题型分类练习第14讲 二次函数的应用(2份,原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map