所属成套资源:2025年中考数学一轮复习题型分类练习 (2份,原卷版+解析版)
2025年中考数学一轮复习题型分类练习第17讲 全等三角形(2份,原卷版+解析版)
展开这是一份2025年中考数学一轮复习题型分类练习第17讲 全等三角形(2份,原卷版+解析版),文件包含2025年中考数学一轮复习题型分类练习第17讲全等三角形原卷版docx、2025年中考数学一轮复习题型分类练习第17讲全等三角形解析版docx等2份试卷配套教学资源,其中试卷共170页, 欢迎下载使用。
TOC \ "1-3" \n \h \z \u
\l "_Tc156126295" 题型01 利用全等三角形的性质求角度
\l "_Tc156126296" 题型02 利用全等三角形的性质求长度
\l "_Tc156126297" 题型03 根据全等的性质判断正误
\l "_Tc156126298" 题型04 利用全等三角形的性质求解
\l "_Tc156126299" 题型05 添加一个条件使两个三角形全等
\l "_Tc156126300" 题型06 添加一个条件仍不能证明全等
\l "_Tc156126301" 题型07 灵活选用判定方法证明全等
\l "_Tc156126302" 题型08 结合尺规作图的全等问题
\l "_Tc156126303" 题型09 全等三角形模型-一线三等角模型
\l "_Tc156126304" 题型10 全等三角形模型-旋转模型
\l "_Tc156126305" 题型11 构造辅助线证明两个三角形全等-作平行线
\l "_Tc156126306" 题型12 构造辅助线证明两个三角形全等-作垂线
\l "_Tc156126307" 题型13 构造辅助线证明两个三角形全等-倍长中线法
\l "_Tc156126308" 题型14 构造辅助线证明两个三角形全等-截长补短法
\l "_Tc156126309" 题型15 利用全等三角形的性质与判定解决多结论问题
\l "_Tc156126310" 题型16 利用角平分线的性质求长度
\l "_Tc156126311" 题型17 利用角平分线的性质求面积
\l "_Tc156126312" 题型18 角平分线的判定定理
\l "_Tc156126313" 题型19 三角形的三条角平分线的性质定理的应用方法
\l "_Tc156126314" 题型20 利用角平分线性质定理和判定定理解决多结论问题
\l "_Tc156126315" 题型21 利用全等三角形的性质与判定解决高度测量问题
\l "_Tc156126316" 题型22 利用全等三角形的性质与判定解决河宽测量问题
\l "_Tc156126317" 题型23 利用全等三角形的性质与判定解决动点问题
题型01 利用全等三角形的性质求角度
1.(2022·云南昆明·统考三模)如图,△ABC≌△DEF,若∠A=80°,∠F=30°,则∠B的度数是( )
A.80°B.70°C.65°D.60°
2.(2022·重庆渝中·统考二模)如图,点F,B,E,C在同一条直线上,△ABC≌△DEF,若∠A=36°,∠F=24°,则∠DEC的度数为( )
A.50°B.60°C.65°D.120°
3.(2022·山东淄博·模拟预测)在△ABC中,∠C=90°,D、E分别是BC,AB上的点,ΔADC≅ΔADE≅ΔBDE,则∠B的度数( )
A.15B.20C.25D.30
题型02 利用全等三角形的性质求长度
4.(2021·江苏扬州·统考二模)如图,Rt△ABC≌Rt△FDE,∠ABC=∠FDE=90°,∠BAC=30°,AC=4,将Rt△FDE沿直线l向右平移,连接BD、BE,则BD+BE的最小值为 .
5.(2021·北京海淀·人大附中校考模拟预测)如图,正方形ABCD是由四个全等的直角三角形围成的,若CF=5,AB=13,则EF的长为 .
6.(2022·浙江绍兴·统考一模)如图是沙漏示意图(数据如图),上下两部分为全等三角形,将上半部分填满沙子后,在沙子下落至如图位置时,AB的长为多少?(正在下落的沙子忽略不计)( )
A.1cmB.2cmC.3cmD.4cm
题型03 根据全等的性质判断正误
7.(2022·云南·统考一模)如图,若△ABC≌△ADE,则下列结论中一定成立的是( )
A.AC=DEB.∠BAD=∠CAEC.AB=AED.∠ABC=∠AED
题型04 利用全等三角形的性质求解
8.(2022·安徽合肥·合肥38中校考一模)如图,△DEF是由△ABC经过平移得到的,AC分别交DE、EF于点G、H,若∠B=120°,∠C=30°,则∠DGH的度数为( )
A.150°B.140°C.120°D.30°
9.(2022·辽宁大连·统考一模)如图,将△ABC沿AC所在的直线翻折得到△AB′C,再将△AB′C沿AB′所在的直线翻折得到△AB′C′,点B,B′,C′在同一条直线上,∠BAC=α,由此给出下列说法:①△ABC≌△AB′C′,②AC⊥BB′,③∠CB′B=2α.其中正确的说法是( )
A.①②B.①③C.②③D.①②③
10.(2023·湖北恩施·统考一模)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点,点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上以相同速度由点C向点A运动,一个到达终点后另一个点也停止运动,当△BDP与△CPQ全等时,点P运动的时间是( )
A.t=1sB.t=53sC.t=43sD.t=53s或t=43s
11.(2023·山东青岛·模拟预测)如图,将边长为3的正方形ABCD绕点A顺时针旋转30°到AB1C1D1的位置,则阴影部分的面积是 .
12.(2020·浙江绍兴·模拟预测)如图,在△ABC中,∠B=45°,∠C=60°,点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.
(1)如图1,当点P落在BC上时,求∠AEP的度数.
(2)如图2,当PF⊥AC时,求∠BEP的度数.
题型05 添加一个条件使两个三角形全等
13.(2023·湖南永州·统考二模)如图,点E,F分别在□ABCD的边AB,CD的延长线上,连接EF,分别交AD,BC于G,H.添加一个条件使△AEG≌△CFH,这个条件可以是 .(只需写一种情况)
14.(2022·北京朝阳·统考二模)如图,OP平分∠MON,过点P的直线与OM,ON分别相交于点A,B,只需添加一个条件即可证明ΔAOP≅ΔBOP,这个条件可以是 (写出一个即可).
15.(2022·北京门头沟·统考一模)如图,点P在直线AB外,点A、B、C、D均在直线AB上,如果AC=BD,只需添加一个条件即可证明ΔAPC≌ΔBPD,这个条件可以是 (写出一个即可).
16.(2022·北京顺义·统考二模)如图,AD,BE是△ABC的两条高线,只需添加一个条件即可证明△ADC≌△BEC(不添加其它字母及辅助线),这个条件可以是 (写出一个即可).
题型06 添加一个条件仍不能证明全等
17.(2022·重庆南岸·统考一模)如图,点F,E在AC上,AD=CB,∠D=∠B.添加一个条件,不一定能证明△ADE≌△CBF的是( )
A.AD∥BCB.DE∥FBC.DE=BFD.AE=CF
18.(2022·河北石家庄·石家庄市第四十中学校考一模)如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是( )
A.AD=AEB.BE=CDC.∠ADC=∠AEBD.∠DCB=∠EBC
19.(2022·贵州贵阳·统考二模)如图,已知AB=CD,若使△ABC≌△DCB,则不能添加下列选项中的( )
A.∠ABC=∠DCBB.BO=CO
C.AO=DOD.∠A=∠D
20.(2022·重庆·重庆市育才中学校考一模)如图,点E、F分别在菱形ABCD的BC、DC边上,添加以下条件不能证明△ABE≌△ADF的是( )
A.CE=CFB.∠BAF=∠DAEC.AE=AFD.∠AEC=∠AFC
题型07 灵活选用判定方法证明全等
21.(2019·广东揭阳·校联考二模)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )
A.甲和乙B.乙和丙C.甲和丙D.只有丙
22.(2022·广西百色·统考二模)如图,在△ABC和△DCB中,∠A=∠D,AC和DB相交于点O,OA=OD.
(1)AB=DC;
(2)△ABC≌△DCB.
23.(2022·贵州铜仁·校联考模拟预测)天使是美好的象征,她的翅膀就像一对全等三角形.如图AD与BC相交于点O,且AB=CD,AD=BC.求证:△ABO≅△CDO.
24.(2021·江苏苏州·校考一模)如图,AB=AD , BC=DC,点E在AC上.
(1)求证:AC平分∠BAD;(2)求证:BE=DE.
25.(2019·陕西西安·校联考一模)已知:如图,点A.F,E.C在同一直线上,AB∥DC,AB=CD,∠B=∠D,
(1)求证:△ABE≌△CDF;
(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.
题型08 结合尺规作图的全等问题
26.(2020·吉林·吉林省实验校考二模)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于12AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为( )
A.22B.4C.3D.10
27.(2021·河南焦作·统考二模)已知锐角∠AOB,如图,(1)在射线OA上取点C,E,分别以点O为圆心,OC,OE长为半径作弧,交射线OB于点D,F;(2)连接CF,DE交于点P.根据以上作图过程及所作图形,下列结论错误的是( )
A.CE=DFB.PE=PF
C.若∠AOB=60°,则∠CPD=120°D.点P在∠AOB的平分线上
28.(2021·江苏泰州·统考一模)已知:如图1,△ACD中,AD≠CD.
(1)请你以AC为一边,在AC的同侧构造一个与△ACD全等的三角形△ACE,画出图形;(要求:尺规作图,保留作图痕迹,不写作法)
(2)参考(1)中构造全等三角形的方法解决下面问题:
如图2,在四边形ABCD中①∠ACB+∠CAD=180°;②∠B=∠D;③CD=AB.请在上述三条信息中选择其中两条作为条件,其余的一条信息作为结论组成一个命题.试判断这个命题是否正确,并说明理由你选择的条件是________,结论是_______(只要填写序号)
29.(2021·北京·统考一模)已知:如图1,在△ABC中,∠CAB=60°.求作:射线CP,使得CP//AB.
下面是小明设计的尺规作图过程.
作法:如图2,
①以点A为圆心,适当长为半径作弧,分别交AC,AB于D,E两点;
②以点C为圆心,AD长为半径作弧,交AC的延长线于点F;
③以点F为圆心,DE长为半径作弧,两弧在∠FCB内部交于点P;
④作射线CP.所以射线CP就是所求作的射线.
根据小明设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:连接FP,DE.
∵CF=AD,CP=AE,FP=DE.
∴△ADE≌△__________,
∴∠DAE=∠__________,
∴CP//AB(__________)(填推理的依据).
题型09 全等三角形模型-一线三等角模型
30.(2023·湖南郴州·校考三模)如图,△OAB是等腰直角三角形,直角顶点与坐标原点重合,若点B在反比例函数y=1x(x>0)的图象上,则经过点A的反比例函数表达式为 .
31.(2020·河北保定·统考模拟预测)如图,桌面上竖直放置着一个等腰直角三角板ABC,若测得斜边AB的两端点到桌面的距离分别为AD,BE.
(1)求证:△ADC≌△CEB;
(2)若DE=10,AD=7,求BE的长.
32.(2023·陕西·模拟预测)如图,点C在BD上,AB⊥BD,ED⊥BD,AC⊥CE,AB=CD.求证:△ABC≌△CDE.
题型10 全等三角形模型-旋转模型
33.(2022·山东日照·校考二模)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.
(1)如图,当α=60°时,
①求证:PA=DC;
②求∠DCP的度数:
(2)如图2,当α=120°时,请直接写出PA和DC的数量关系为__________;
(3)当α=120°时,若AB=6,BP=31时,请直接写出点D到CP的距离为__________.
34.(2020·山东德州·统考二模)小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.
(一)猜测探究
在ΔABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC相等的角度,得到线段AN,连接NB.
(1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是 ,NB与MC的数量关系是 ;
(2)如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.
(二)拓展应用
如图3,在ΔA1B1C1中,A1B1=8,∠A1B1C1=60∘,∠B1A1C1=75∘,P是B1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旋转75∘,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值.
35.(2020·重庆·重庆第二外国语学校校考模拟预测)如图,在△ABC中,∠BAC=90°,E为边BC上的点,且AB=AE,D为线段BE的中点,过点E作EF⊥AE,过点A作AF∥BC,且AF、EF相交于点F.
(1)求证:∠C=∠BAD
(2)求证:AC=EF
36.(2020·辽宁沈阳·统考模拟预测)在△ABC中,AB=AC,点P在平面内,连接AP,并将线段AP绕A顺时针方向旋转与∠BAC相等的角度,得到线段AQ,连接BQ.
(1)如图,如果点P是BC边上任意一点.则线段BQ和线段PC的数量关系是__________.
(2)如图,如果点P为平面内任意一点.前面发现的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.请仅以图所示的位置关系加以证明(或说明);
(3)如图,在△DEF中,DE=8,∠EDF=60°,∠DEF=75°,P是线段EF上的任意一点,连接DP,将线段DP绕点D顺时针方向旋转60°,得到线段DQ,连接EQ.请直接写出线段EQ长度的最小值.
题型11 构造辅助线证明两个三角形全等-作平行线
37.(2021上·山东日照·八年级统考期中)如图,△ABC是边长为2的等边三角形,点P在AB上,过点P作PE⊥AC,垂足为E,延长BC到点Q,使CQ=PA,连接PQ交AC于点D,则DE的长为( )
A.0.5B.0.9C.1D.1.25
38.(2023上·黑龙江齐齐哈尔·八年级校联考期中)如图,在等边△ABC中,点E为边AB上任意一点,点D在边CB的延长线上,且ED=EC.
(1)当点E为AB的中点时(如图1),则有AE______DB(填“>”“<”或“=”);
(2)猜想如图2,AE与DB的数量关系,并证明你的猜想.
39.(2019上·安徽合肥·八年级校联考期末) P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.
(1)证明:PD=DQ.
(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.
题型12 构造辅助线证明两个三角形全等-作垂线
40.(2023上·北京海淀·八年级人大附中校考期中)小宇和小明一起进行数学游戏:已知∠MON=90°,将等腰直角三角板△ABC摆放在平面内,使点A在∠MON的内部,且两个底角顶点B,C分别放在边OM,ON上.
(1)如图1,小明摆放△ABC,恰好使得AB⊥OM,AC⊥ON,又由于△ABC是等腰直角三角形,AB=AC,从而直接可以判断出点A在∠MON的角平分线上.请回答:小明能够直接作出判断的数学依据是______.
(2)如图2,小宇调整了△ABC的位置,请判断OA平分∠MON是否仍然成立?若成立,请证明,若不成立,请举出反例.
41.(2022上·湖北武汉·八年级统考期中)定义:三角形一个内角的平分线所在的直线与另一个内角相邻的外角的平分线相交所成的锐角称为该三角形第三个内角的遥望角.
(1)如图1所示,∠E是△ABC中∠A的遥望角,直接写出∠E与∠A的数量关系__________;
(2)如图1所示,连接AE,猜想∠BAE与∠CAE的数量关系,并说明理由;
(3)如图2,四边形ABCD中,∠ABC=∠ADC=90°,点E在BD的延长线上,连CE,若己知DE=DC=AD,求证:∠BEC是△ABC中∠BAC的遥望角.
题型13 构造辅助线证明两个三角形全等-倍长中线法
42.(2020·江苏无锡·统考二模)如图,AB∥CD,∠BCD=90°,AB=1,BC=CD=2,E为AD上的中点,则BE= .
43.(2019下·上海·八年级上外附中校考阶段练习)如图,平行四边形ABCD中,CE⊥AD于E,点F为边AB中点,AD=12CD,∠CEF=40°,则∠AFE=
44.(2024上·辽宁抚顺·九年级统考期末)问题初探:数学课外兴趣小组活动时,数学杨老师提出了如下问题:在△ABC中,AB=7,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图1):延长AD到E,使得DE=AD;再连接BE,把AB,AC,2AD集中在△ABE中;利用上述方法求出AD的取值范围是2
感悟:数学杨老师给学生们总结解这类问题时,条件中若出现“中点”“中线”等条件,可以考虑倍长中线,或通过引平行线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形中.
(2)类比分析:如图2,△ABC和△BDE都是等腰直角三角形,∠ABC=∠DBE=90°,BF是△BEC的中线,试探究线段AD与BF的数量和位置关系,并加以证明.
(3)学以致用:如图3,已知△ABC为直角三角形,∠ACB=90°,D为斜边AB的中点,一个三角板的直角顶点与D重合,一个直角边DF与AC的延长线交于点F,另一直角边与BC边交于点E,若AF=12,BE=5,求出EF的长是多少?
45.(2020·江苏徐州·统考模拟预测)(1)阅读理解:
如图①,在△ABC中,若AB=8,AC=5,求BC边上的中线AD的取值范围.可以用如下方法:将△ACD绕着点D逆时针旋转180∘得到△EBD,在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是_______;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=100°,以C为顶点作一个50°的角,角的两边分别交AB、AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并说明理由.
题型14 构造辅助线证明两个三角形全等-截长补短法
46.(2020·辽宁沈阳·统考一模)思维探索:
在正方形ABCD中,AB=4,∠EAF的两边分别交射线CB,DC于点E,F,∠EAF=45°.
(1)如图1,当点E,F分别在线段BC,CD上时,△CEF的周长是 ;
(2)如图2,当点E,F分别在CB,DC的延长线上,CF=2时,求△CEF的周长;
拓展提升:
如图3,在Rt△ABC中,∠ACB=90°,CA=CB,过点B作BD⊥BC,连接AD,在BC的延长线上取一点E,使∠EDA=30°,连接AE,当BD=2,∠EAD=45°时,请直接写出线段CE的长度.
47.(2021·安徽合肥·统考一模)已知:如图1,△ABC中,∠CAB=120°, AC=AB,点D是BC上一点,其中∠ADC=α(30°<α<90°),将△ABD沿AD所在的直线折叠得到△AED,AE交CB于F,连接CE
(1)求∠CDE与∠AEC的度数(用含α的代数式表示);
(2)如图2,当α=45°时,解决以下问题:
①已知AD=2,求CE的值;
②证明:DC-DE=2AD;
48.(2020·全国·九年级专题练习)如图,△ABC是边长为2的等边三角形,△BDC是顶角为120°的等腰三角形,以点D为顶点作∠MDN=60°,点M、N分别在AB、AC上.
(1)如图①,当MN//BC时,则△AMN的周长为______;
(2)如图②,求证:BM+NC=MN.
题型15 利用全等三角形的性质与判定解决多结论问题
49.(2023·四川眉山·校考三模)如图,在矩形ABCD中,AC,BD交于点O,过点B作BF⊥AC于点M,交CD于点F,过点D作DE∥BF交AC于点E,连接FN,EM,若AO=AD,有下列结论:①NE=MF; ②∠DEM=60°;③DN2=MC⋅NC; ④ 四边形DEBF是菱形;其中正确结论的个数是( )
A.3个B.2个C.1个D.0个
50.(2023·黑龙江鸡西·统考二模)如图,在正方形ABCD中,M,N分别为AB,BC的中点,CM与DN相交于点G,延长BG交CD于点E,CM交BD于点H.下列结论:①CM⊥DN;②BH=BM;③S△DNC=3S△BMH;④∠BGM=45°;⑤GM+GN=2GB.其中正确结论的序号有( )
A.②③④B.①③⑤C.①③④⑤D.①②④⑤
51.(2022·湖北咸宁·校考模拟预测)正方形ABCD中,E为对角线AC上的动点(不于B、C重合),连接BE,DE,作EF⊥BE交CD或其延长线于F,下列结论:①BE=DE;②△DEF为等腰三角形;③AE=CF;④CE
52.(2022·福建福州·校考模拟预测)如图,在正方形ABCD中,点E,F在AC上且AEAC=13,CFAC=14,延长DE交AB于点G,延长DF交BC于点H,连接GH.下列结论:①点G为AB的中点,②DF=GH,③∠GDH=45°,④DE⋅DG=DF⋅DH,其中正确结论的序号是 .(写出所有正确结论的序号)
题型16 利用角平分线的性质求长度
53.(2022·山东济南·校考模拟预测)如图,在△ABC中,∠ABC,∠ACB的平分线交于点O,OD⊥BC于D,如果AB=25cm,BC=20cm,AC=15cm,且S△ABC=150cm2,那么OD的长度是( )
A.2cmB.3cmC.4cmD.5cm
54.(2022·新疆伊犁·统考一模)如图,△ABC中,AB=5,AC=7,BC=10.∠BAC的平分线AD交BC于点D.则DC的长度为 ( )
A.356B.6C.210D.35
55.(2019·河北·模拟预测)如图,已知 BG 是∠ABC 的平分线,DE⊥AB 于点 E,DF⊥BC 于点 F,DE=6,则 DF 的长度是( )
A.2B.3C.4D.6
题型17 利用角平分线的性质求面积
56.(2023·吉林长春·统考三模)如图,在Rt△ABC中,∠BAC=90°,按下列方式作图:①以点C为圆心,适当长为半径画弧,分别交AC,BC于点F,G;②分别以点F,G为圆心,大于12FG的长度为半径画弧,两弧交于点H;③作射线CH交AB于点E,若AE=2,BC=7.则△BEC的面积为( )
A.7B.8C.14D.16
57.(2023·湖北咸宁·统考模拟预测)如图,在Rt△ABC中,∠C=90°,以顶点B为圆心,适当长度为半径画弧,分别交AB,BC于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交点P,作射线BP交AC于点D,若AC=2BC,则S△BCD:S△ABD的值为( ).
A.12B.55C.13D.35
58.(2023·云南红河·统考二模)如图,在Rt△ABC中,∠B=90°,以A为圆心、一定长度为半径画圆弧,交AB,AC于点D,E,分别以点D,E为圆心、大于12DE长度为半径画圆弧,两条圆弧相交于点F,连接AF交BC于点M,BM=4,AC=9,则S△AMC为 .
题型18 角平分线的判定定理
59.(2020·浙江绍兴·模拟预测)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF,下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有( )
A.1个B.2个C.3个D.4个
60.(2022·天津津南·统考一模)如图,在钝角△ABC中,∠BAC=35°,将△ABC绕点A顺时针旋转70°得到△ADE,点B,C的对应点分别为D,E,连接BE.则下列结论一定正确的是( )
A.∠ABC=∠AEDB.AC=DEC.AD+BE=ACD.AE平分∠BED
61.(2021·四川宜宾·四川省宜宾市第二中学校校考一模)如图,A,B,E三点在同一直线上,△ABC,△CDE都是等边三角形,连接AD,BE,OC:下列结论中正确的是( )
①△ACD≌△BCE;
②△CPQ是等边三角形;
③OC平分∠AOE;
④△BPO≌△EDO.
A.①②B.①②③C.①②④D.①②③④
题型19 三角形的三条角平分线的性质定理的应用方法
62.(2019·广东深圳·深圳市文锦中学校考一模)已知:如图所示,三条公路两两分别相交于点A、B、C,在甲区内求作一点P,使点P到三条公路的距离都相等.
题型20 利用角平分线性质定理和判定定理解决多结论问题
63.(2022·湖南娄底·统考模拟预测)如图,在矩形ABCD中,DE平分∠ADC交BC于点E,点F是CD边上一点(不与点D重合).点P为DE上一动点,PE
64.(2021·山东东营·东营市实验中学校考模拟预测)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧,分别交AB,AC于点M和N,再分别以点M和N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交BC于点D.则下列结论:①AD是△ABC的角平分线;②点D在线段AB的垂直平分线上;③∠ADC=60°;④S△ADC:S△ABC=1:3;⑤AB=23CD,其中正确结论的个数是( )
A.2个B.3个C.4个D.5个
65.(2021·四川宜宾·统考二模)如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O.下列结论:①AE=AD;②∠AED=∠CED;③H为BF的中点;④CF=32DF.其中正确的有 (将所有正确结论的序号填在横线上)
66.(2022·湖南长沙·长沙市开福区青竹湖湘一外国语学校校考一模)如图,在△ABC中:
(1)下列操作中,作∠ABC的平分线的正确顺序是________(将序号按正确的顺序写在横线上).
①分别以点M、N为圆心,大于12MN的长为半径作圆弧,在∠ABC内,两弧交于点P;
②以点B为圆心,适当长为半径作圆弧,交AB于点M,交BC于点N;
③画射线BP,交AC于点D.
(2)连接MP、NP,通过证明△BMP≌△BNP,得到∠ABD=∠CBD,从而得到BD是∠ABC的平分线,其中证明△BMP≌△BNP的依据是________(填序号).
①SAS;②ASA;③AAS;④SSS
(3)若AB=8,BC=7,SΔABC=45,过点D作DE⊥AB于E,求DE的长.
题型21 利用全等三角形的性质与判定解决高度测量问题
67.(2022·陕西铜川·统考一模)如图,小明和小华家中间隔了一个办公楼,他们想要测量自己家对面办公楼的高OM,小明在自家阳台A处测得办公楼顶部O的仰角∠1,小华在自家阳台B处测得办公楼顶部O的仰角∠2.已知C,M,D三点共线,OA⊥OB且OA=OB,AC=10m,BD=3m,CD=17m.试求办公楼的高度OM.
68.(2022·山西·一模)李华同学用11块高度都是1cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个正方形ABCD∠ABC=90°,AB=BC,点B在EF上,点A和C分别与木墙的顶端重合,求正方形ABCD的面积.
69.(2019·山西晋城·统考二模)如图,有两个长度相等的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠B和∠F的大小有什么关系?
题型22 利用全等三角形的性质与判定解决河宽测量问题
70.(2022·广西柳州·统考一模)如图,为了估算河岸相对的两点A,B的宽度,可以在河岸边取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上,这时测得DE=60米,求河宽AB.
题型23 利用全等三角形的性质与判定解决动点问题
71.(2019·河北承德·统考模拟预测)已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为ts0
(2)设五边形OECQF的面积为Scm2,试确定S与t的函数关系式;
(3)在运动过程中,是否存在某一时刻t,使S五边形OECQF:SΔACD=9:16?若存在,求出t的值;若不存在,请说明理由.
72.(2021·四川成都·统考二模)如图,等边△ABC的边长为12,点D,E分别在边AB,AC上,且AD=AE=4,点F为BA延长线上一点,过点F作直线l∥BC,G为射线BC上动点,连接GD并延长交直线l于点H,连接FE并延长交BC于点M,连接HE并延长交射线BC于点N.
(1)若AF=4,当BG=4时,求线段HF和EH的长;
(2)若AF=a(a>0),点G在运动过程中,请判断△HGN的面积是否改变.若不变,求出其值(用含a的代数式表示);若改变,请说明理由.
(3)在(2)的条件下,是否存在点C和点G是线段BN的三等分点的情况?若存在,求出此时a的值;若不存在,请说明理由.
73.(2021·广东梅州·统考二模)如图,在四边形ABCD和Rt△EBF中,AB//CD,CD>AB,点C在EB上,∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,延长DC交EF于点M,点P从点A出发,沿AC方向匀速运动,速度为2cm/s:同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s.过点P作GH⊥AB于点H,交CD于点G.设运动时间为t(s)(0
(2)连接QC,QH,设三角形CQH的面积为S(cm2),求S关于t的函数关系式;
(3)点Q在运动过程中,是否存在某一时刻t,使点Q在∠CAF的平分线上?若存在,求出t的值;若不存在,请说明理由.
1.(2021·黑龙江哈尔滨·统考中考真题)如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为( )
A.30°B.25°C.35°D.65°
2.(2022·浙江衢州·统考中考真题)如图,在△ABC中,AB=AC,∠B=36°.分别以点A,C为圆心,大于12AC的长为半径画弧,两弧相交于点D,E,作直线DE分别交AC,BC于点F,G.以G为圆心,GC长为半径画弧,交BC于点H,连结AG,AH.则下列说法错误的是( )
A.AG=CGB.∠B=2∠HAB
C.△CAH≅△BAGD.BG2=CG⋅CB
3.(2022·重庆·统考中考真题)如图,在正方形ABCD中,对角线AC、BD相交于点O. E、F分别为AC、BD上一点,且OE=OF,连接AF,BE,EF.若∠AFE=25°,则∠CBE的度数为( )
A.50°B.55°C.65°D.70°
4.(2022·四川成都·统考中考真题)如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是( )
A.BC=DEB.AE=DBC.∠A=∠DEFD.∠ABC=∠D
5.(2022·山东泰安·统考中考真题)如图,平行四边形ABCD的对角线AC,BD相交于点O.点E为BC的中点,连接EO并延长交AD于点F,∠ABC=60°,BC=2AB.下列结论:①AB⊥AC;②AD=4OE;③四边形AECF是菱形;④S△BOE=14S△ABC.其中正确结论的个数是( )
A.4B.3C.2D.1
6.(2022·湖南常德·统考中考真题)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A、B的对应点分别是D,E,点F是边AC的中点,连接BF,BE,FD.则下列结论错误的是( )
A.BE=BCB.BF∥DE,BF=DE
C.∠DFC=90°D.DG=3GF
7.(2023·河北·统考中考真题)在△ABC和△A'B'C'中,∠B=∠B'=30°,AB=A'B'=6,AC=A'C'=4.已知∠C=n°,则∠C'=( )
A.30°B.n°C.n°或180°-n°D.30°或150°
8.(2023·吉林长春·统考中考真题)如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA'、BB'的中点,只要量出A'B'的长度,就可以道该零件内径AB的长度.依据的数学基本事实是( )
A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等
C.两余直线被一组平行线所截,所的对应线段成比例D.两点之间线段最短
9.(2023·四川凉山·统考中考真题)如图,点E、F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE的是( )
A.∠A=∠DB.∠AFB=∠DECC.AB=DCD.AF=DE
10.(2023·湖北黄冈·统考中考真题)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于12EF长为半径画弧交于点P,作射线BP,过点C作BP的垂线分别交BD,AD于点M,N,则CN的长为( )
A.10B.11C.23D.4
11.(2023·辽宁·统考中考真题)如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,以点A为圆心,适当长为半径作弧,分别交AB,AC于点E,F,分别以点E,F为圆心,大于12EF的长为半径作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,则BD的长为( )
A.35B.34C.43D.53
12.(2022·四川南充·中考真题)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE//AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是( )
A.BF=1B.DC=3C.AE=5D.AC=9
13.(2022·湖北黄冈·统考中考真题)如图,在矩形ABCD中,AB<BC,连接AC,分别以点A,C为圆心,大于12AC的长为半径画弧,两弧交于点M,N,直线MN分别交AD,BC于点E,F.下列结论:
①四边形AECF是菱形;
②∠AFB=2∠ACB;
③AC•EF=CF•CD;
④若AF平分∠BAC,则CF=2BF.
其中正确结论的个数是( )
A.4B.3C.2D.1
二、填空题
14.(2023·四川成都·统考中考真题)如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF的长为 .
15.(2022·吉林长春·统考中考真题)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为 厘米.
16.(2023·重庆·统考中考真题)如图,在Rt△ABC中,∠BAC=90∘,AB=AC,点D为BC上一点,连接AD.过点B作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE=4,CF=1,则EF的长度为 .
17.(2023·山东·统考中考真题)如图,在平面直角坐标系中,点A,B在反比例函数y=kx(x>0)的图象上.点A的坐标为m,2.连接OA,OB,AB.若OA=AB,∠OAB=90°,则k的值为 .
18.(2023·湖北随州·统考中考真题)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,D为AC上一点,若BD是∠ABC的角平分线,则AD= .
19.(2023·四川遂宁·统考中考真题)如图,以△ABC的边AB、AC为腰分别向外作等腰直角△ABE、△ACD,连结ED、BD、EC,过点A的直线l分别交线段DF、BC于点M、N,以下说法:①当AB=AC=BC时,∠AED=30°;②EC=BD;③若AB=3,AC=4,BC=6,则DE=23;④当直线l⊥BC时,点M为线段DE的中点.正确的有 .(填序号)
20.(2023·广东广州·统考中考真题)如图,已知AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,AE=12,DF=5,则点E到直线AD的距离为 .
三、解答题
21.(2023·江苏无锡·统考中考真题)在△ABC中,点D,F分别为边AC,AB的中点.延长DF到点E,使DF=EF,连接BE.
(1)求证:△ADF≌△BEF;
(2)求证:四边形BCDE是平行四边形.
22.(2023·江苏苏州·统考中考真题)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.
(1)求证:△ADE≌△ADF;
(2)若∠BAC=80°,求∠BDE的度数.
23.(2023·湖北随州·统考中考真题)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.
(1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)
当△ABC的三个内角均小于120°时,
如图1,将△APC绕,点C顺时针旋转60°得到△A'P'C,连接PP',
由PC=P'C,∠PCP'=60°,可知△PCP'为 ① 三角形,故PP'=PC,又P'A'=PA,故PA+PB+PC=PA'+PB+PP'≥A'B,
由 ② 可知,当B,P,P',A在同一条直线上时,PA+PB+PC取最小值,如图2,最小值为A'B,此时的P点为该三角形的“费马点”,且有∠APC=∠BPC=∠APB= ③ ;
已知当△ABC有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点.如图3,若∠BAC≥120°,则该三角形的“费马点”为 ④ 点.
(2)如图4,在△ABC中,三个内角均小于120°,且AC=3,BC=4,∠ACB=30°,已知点P为△ABC的“费马点”,求PA+PB+PC的值;
(3)如图5,设村庄A,B,C的连线构成一个三角形,且已知AC=4km,BC=23km,∠ACB=60°.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a元/km,a元/km,2a元/km,选取合适的P的位置,可以使总的铺设成本最低为___________元.(结果用含a的式子表示)
24.(2023·广西·统考中考真题)如图,△ABC是边长为4的等边三角形,点D,E,F分别在边AB,BC,CA上运动,满足AD=BE=CF.
(1)求证:△ADF≌△BED;
(2)设AD的长为x,△DEF的面积为y,求y关于x的函数解析式;
(3)结合(2)所得的函数,描述△DEF的面积随AD的增大如何变化.
25.(2023·甘肃兰州·统考中考真题)综合与实践
问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”即:作一个已知角的平分线,如图2是欧几里得在《几何原本》中给出的角平分线作图法:在OA和OB上分别取点C和D,使得OC=OD,连接CD,以CD为边作等边三角形CDE,则OE就是∠AOB的平分线.
请写出OE平分∠AOB的依据:____________;
类比迁移:
(2)小明根据以上信息研究发现:△CDE不一定必须是等边三角形,只需CE=DE即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3,在∠AOB的边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同刻度分别与点M,N重合,则过角尺顶点C的射线OC是∠AOB的平分线,请说明此做法的理由;
拓展实践:
(3)小明将研究应用于实践.如图4,校园的两条小路AB和AC,汇聚形成了一个岔路口A,现在学校要在两条小路之间安装一盏路灯E,使得路灯照亮两条小路(两条小路一样亮),并且路灯E到岔路口A的距离和休息椅D到岔路口A的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规在对应的示意图5中作出路灯E的位置.(保留作图痕迹,不写作法)
26.(2023·四川达州·统考中考真题)如图,在Rt△ABC中,∠ACB=90°,AB=5,BC=21.
(1)尺规作图:作∠BAC的角平分线交BC于点P(不写做法,保留作图痕迹);
(2)在(1)所作图形中,求△ABP的面积.
相关试卷
这是一份2025年中考数学一轮复习题型分类练习第29讲 尺规作图与定义、命题、定理(2份,原卷版+解析版),文件包含2025年中考数学一轮复习题型分类练习第29讲尺规作图与定义命题定理原卷版docx、2025年中考数学一轮复习题型分类练习第29讲尺规作图与定义命题定理解析版docx等2份试卷配套教学资源,其中试卷共122页, 欢迎下载使用。
这是一份2025年中考数学一轮复习题型分类练习第25讲 特殊四边形-正方形与梯形(2份,原卷版+解析版),文件包含2025年中考数学一轮复习题型分类练习第25讲特殊四边形-正方形与梯形原卷版docx、2025年中考数学一轮复习题型分类练习第25讲特殊四边形-正方形与梯形解析版docx等2份试卷配套教学资源,其中试卷共226页, 欢迎下载使用。
这是一份2025年中考数学一轮复习题型分类练习第24讲 特殊四边形-菱形(2份,原卷版+解析版),文件包含2025年中考数学一轮复习题型分类练习第24讲特殊四边形-菱形原卷版docx、2025年中考数学一轮复习题型分类练习第24讲特殊四边形-菱形解析版docx等2份试卷配套教学资源,其中试卷共167页, 欢迎下载使用。