人教版(2024)七年级上册4.2 直线、射线、线段精品同步练习题
展开1、直线、射线、线段的比较
2、点、直线、射线和线段的表示
在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示,如点A
一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示,如直线l,或者直线AB
一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面),如射线l,射线AB
一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示,如线段l,线段AB
3、点和直线的位置关系有两种:
①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
4、线段的性质
(1)线段公理:两点之间的所有连线中,线段最短。
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
(5)线段的比较:1.目测法 2.叠合法 3.度量法
5、线段的中点:
点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。
M
A
B
M是线段AB的中点
AM=BM=AB(或者AB=2AM=2BM)
6、直线的性质
(1)直线公理:经过两个点有且只有一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
考点精讲
考点1:根据几何语言画图
典例:(2022·河北保定·七年级期末)(1)如图,平面上有四个点,,,,按照以下要求作图:
①作直线;
②作射线交直线于点;
③连接,交于点;
(2)图中共有______条线段;
(3)若图中是的一个三等分点,,已知线段上所有线段之和为18,求长.
方法或规律点拨
本题主要考查了线段、射线、直线、一元一次方程求线段长度,解决此类题目的关键是熟悉基本几何图形的性质.
巩固练习
1.(2022·广东·惠州市德兴通中英文学校九年级开学考试)根据下列语句画出图形.
(1)点A在直线l上,点B在直线l外;
(2)过点N画射线MN;
(3)画一条与线段AB相交的直线CA.
2.(2022·山东·诸城市龙源学校七年级阶段练习)按要求作图.
(1)作线段AD和射线AC;
(2)在射线AC上,作出线段AE,使AE=AC-AB.
3.(2022·山东·阳谷县阿城中学七年级阶段练习)读下面的语句,并按照这些语句画出图形.
(1)画直线交于点E;
(2)画线段交于点F;
(3)连接并延长交线段于点G;
(4)连接,并将其反向延长;
(5)作射线.
4.(2022·福建·测试·编辑教研五七年级期中)根据下列语句画出图形:
①连接AC,BD相交于点;
②延长线段AB,DC相交于点E;
③反向延长线段DA,CB相交于点F.
5.(2022·山东·单县湖西学校七年级期中)如图,在平面内有A、B、C三点.
(1)画直线AB,射线AC,线段BC;
(2)在线段BC上任取一点D(不同于B、C),连接AD,并延长AD至点E,使.
6.(2022·黑龙江·哈尔滨市第一六三中学校期中)画图
如图,平面上有四点A、B、C、D,根据语句画图
(1)画直线、直线交于点E;
(2)画射线、射线相交于点F;
(3)画线段.
7.(2022·陕西·西安高新一中实验中学七年级期末)如图,平面上有四个点A,B,C,D.根据下列语句,完成尺规作图:
(1)画直线AC;
(2)画射线BD交直线AC于点O;
(3)连接BC,并延长至点E,使CE=2BC.
8.(2022·河北保定·七年级期末)已知平面上有四个村庄,用四个点A、B、C、D表示.
(1)连接AB;
(2)作射线AD;
(3)作直线BC与射线AD交于点E;
(4)若要建一供电所M,向四个村庄供电,要使所用电线最短,则供电所M应建在何处?请画出点M的位置并说明理由.
9.(2022·山东烟台·期中)作图题:
如图,已知点,,,,请按要求利用直尺和圆规作出图形.
要求:不写作图步骤,要保留作图痕迹.
(1)作直线和射线;
(2)连接,在线段上作出一点,使得;
(3)在直线上作出一点,使最短.
10.(2022·黑龙江·哈尔滨市第十七中学校七年级阶段练习)如图,已知直线l和直线外三点A,B,C,按下列要求画图:
(1)画射线;
(2)连接;
(3)在直线l上确定点E,使得最小.
11.(2022·全国·七年级课时练习)如图.已知三点A.B.C.
(1)画直线AB.
(2)画射线BC.
(3)画线段AC.
12.(2022·吉林松原·七年级期末)如图,已知平面内的四点、、、.请你按下列语句画图:
(1)连接
(2)作射线
(3)作直线
(4)线段与相交于点.
(5)反向延长到,使.
13.(2022·山东淄博·期中)(1)如图,已知线段,用尺规作一条线段,使.(不写作法,保留作图痕迹)
(2)如图,已知四点的位置如图所示,根据下列语句,画出图形.
①画直线相交于点;
②画射线.
考点2:直线、射线、线段的数量和交点
典例:1.(2022·江西赣州·七年级期末)【观察发现】如图,我们通过观察后可以发现:两条直线相交,最多有1个交点;三条直线相交,最多有3个交点;那么四条直线相交,最多有______个交点;n条直线相交,最多有______个交点(用含n的代数式表示);
【实践应用】在实际生活中同样存在数学规律型问题,请你类比上述规律探究,计算:某校七年级举办篮球比赛,第一轮要求每两班之间比赛一场,若七年级共有16个班,则这一轮共要进行多少场比赛?
方法或规律点拨
本题主要考查图形的变化规律,解决本题的关键是要找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.
2.(2022·全国·七年级专题练习)若直线上有两个点,则以这两点为端点可以确定一条线段.请仔细观察图形,解决下列问题:
(1)如图1,直线l上有3个点A,B,C,则可以确定 条线段;
(2)如图2,直线l上有4个点A,B,C,D,则可以确定 条线段;
(3)若直线上有n个点,一共可以确定多少条线段?请写出解题过程.
方法或规律点拨
本题考查了线段的定义及数量关系,熟练掌握线段的定义及数量关系是解题的关键.
巩固练习
1.(2022·山东·聊城市水城慧德学校七年级阶段练习)济青高铁北线,共设有5个不同站点,要保证每两个站点之间都有高铁可乘,需要印制不同的火车票( )
A.20种B.42种C.10种D.84种
2.(2022·山东·万杰朝阳学校期中)下面图形中共有线段 ( )条.
A.7B.8C.9D.10
3.(2022·山东泰安·期中)如图,图中共有______条线段.
A.1B.2C.3D.4
4.(2022·山东·聊城市茌平区实验中学七年级阶段练习)如图,观察图形,下列说法正确的有( )个
①直线和直线是同一条直线,②射线和射线是同一条射线,③,④三条直线两两相交时一定有三个交点
A.1B.2C.3D.4
5.(2022·福建·福州教院二附中七年级期末),,为同一平面内的任意三条直线,那么它们的交点可能有( )个.
A.,或B.,,或C.或D.以上都不对
6.(2022·河南周口·七年级期末)2条直线相交,有1个交点;3条直线相交,最多有3个交点;n条直线相交最多有多少个交点?( )
A.B.C.D.
7.(2022·湖北·武穴市百汇学校七年级阶段练习)平面内三条直线的交点个数可能有( )
A.0个或1个或2个或3个B.1个或2个或3个
C.1个或2个D.1个或3个
8.(2022·山东青岛·七年级期末)平面内两两相交的7条直线,其交点个数最少是m个,最多是n个,则m+n的值为( )
A.18B.20C.22D.24
9.(2022·山东·聊城市茌平区实验中学七年级阶段练习)经过平面内A、B、C、D四点中的每两点作一条直线,可以做_____________条直线.
10.(2022·陕西·西安高新一中实验中学七年级期末)如图,已知点B、C在线段AD上,
(1)图中共有 条线段;
(2)若AD=40,BC=26,点M是AB的中点,点N是CD的中点,求MN的长度.
11.(2022·山西·右玉县第三中学校七年级期末)阅读并填空:
问题:在一条直线上有,,,四个点,那么这条直线上总共有多少条线段?
要解决这个问题,我们可以这样考虑,以为端点的线段有,,3条,同样以为端点,以为端点,以为端点的线段也各有3条,这样共有4个3,即4×3=12(条),但和是同一条线段,即每一条线段重复一次,所以一共有______条线段.那么,若在一条直线上有5个点,则这条直线上共有______条线段;若在一条直线上有个点,则这条直线上共有______条线段.
知识迁移:若在一个锐角内部画2条射线,,则这个图形中总共有______个角;若在内部画条射线,则总共有______个角.
学以致用:一段铁路上共有5个火车站,若一列火车往返过程中,必须停靠每个车站,则铁路局需为这段线路准备______种不同的车票.
12.(2022·河北廊坊·七年级期末)如图,已知线段.
(1)请用尺规按要求作图.(不要求写作法,但要保留作图痕迹)
①在线段的延长线上取点C,使;
②在线段的延长线上取点D,使;
(2)在(1)的条件下,图中共有__________条线段;
(3)在(1)的条件下,若,则__________,__________,__________.
13.(2022·全国·七年级专题练习)按要求完成作图及作答:
(1)如图1,请用适当的语句表述点P与直线l的关系: ;
(2)如图1,画直线PA;
(3)如图1,画射线PB;
(4)如图2,平面内三条直线交于A、B、C三点,点M、N是平面内另外两点,若分别过点M、N各作一条直线,则新增的两条直线使得平面内最多新增 个交点.
考点3:线段的和与差作图
典例:(2022·全国·七年级专题练习)如图,点在线段上.按要求完成下列各小题.
(1)尺规作图:在图中的线段的延长线上找一点,使得;
(2)在(1)的基础上,图中共有______条线段,比较线段大小:______(填“>”“<”或“=”);
(3)在(1)的基础上,若,,求线段的长度.
方法或规律点拨
本题考查作图﹣复杂作图,直线,射线,线段的定义等知识,解题的关键是理解直线,射线,线段的定义.
巩固练习
1.(2022·上海市罗南中学阶段练习)如图所示,已知线段,求作一线段.作法:画射线,在射线上截取,在线段上截取,那么所求的线段是( )
A.B.C.D.
2.(2021·山东淄博·期中)按下列长度,A,B,C三点不可能在同一条直线上的是( )
A.AB=10,AC=2,BC=8B.AB=5,AC=20,BC=16C.AB=6,AC=10,BC=16D.AB=10,AC=15,BC=5
3.(2022·上海理工大学附属初级中学期末)如图,AC>BD,比较线段AB与线段CD的大小( )
A.AB=CDB.AB>CDC.AB<CDD.无法比较
4.(2022·上海市罗南中学阶段练习)已知线段、,且(如图),画一条线段,使它等于.(不写画法或作法,保留画图或作图痕迹)
5.(2021·贵州毕节·七年级阶段练习)(1)如图,已知平面内A、B两点用没有刻度的直尺和圆规按下列要求尺规作图,并保留作图痕迹①连接AB;②反向延长线段AB到C,使AC=AB;③延长线段AB到D,使AD=3AB.
(2)若点E是线段AC的中点,点F是线段AD中点,AB=4cm,求线段EF、CD的长度,并说明线段EF、CD的数量关系.
6.(2022·河南周口·七年级期末)如图,已知射线AD,线段a,b.
(1)尺规作图:在射线AD上作线段AB,BC,使,.(保留作图的痕迹,不要求写出作法)
(2)若cm,cm,求线段AC的长.
7.(2022·上海理工大学附属初级中学期末)根据所示图形填空,已知:线段a、b,且a>3b,画一条线段,使它等于a﹣3b.
(1)画射线_____;
(2)在射线_____上,截取______=a;
(3)在线段______上,顺次截取______=______=_______=b;线段______就是所要画的线段.
8.(2021·山东·济南市莱芜区方下鲁西学校期中)如图,,C是AB的中点,D是CB上一点,E为DB中点,.求CD的长.
9.(2022·贵州·遵义市播州区新蓝学校七年级阶段练习)如图,已知B、C在线段AD上.
(1)图中共有_____条线段;
(2)若AB=CD.
①比较线段的大小:AC_____BD(填:“>”、“=”或“<”);
②若BD=4AB,BC=12cm,求AD的长.
10.(2022·新疆·乌鲁木齐市第136中学七年级期末)如图,已知直线AB及直线AB外一点P,按下列要求完成画图:
(1)画射线PA;
(2)在直线AB上求作线段AC,使AC=AB-PB;
11.(2022·山东烟台·期中)如图,已知线段a、b、c,用尺规作一条线段,使.
要求:不写作法,但要保留作图痕迹,标注大写字母.
12.(2022·山东泰安·期中)如图,已知数轴上有两点A,B,它们的对应数分别是a,b,其中a=12.
(1)在B左侧作线段BC=AB,在B的右侧作线段BD=3AB(要求尺规作图,不写作法,保留作图痕迹)
(2)若点C对应的数是c,点D对应的数是d,且AB=40,求c,d的值.
(3)在(2)的条件下,设点M是BD的中点,N是数轴上一点,且CN=4DN,请直接写出MN的长.
13.(2022·江苏扬州·七年级期中)如图,线段AB,请先画图再完成作答.
(1)按要求作图:反向延长线段AB到点C,使,分别取AB、AC的中点D、E;
(2)若,求DE的长,
考点4:与线段的有关计算
典例:(2022·河南信阳·七年级期末)如图,点C为线段AD上一点,点B为线段CD的中点,且AD=10cm,BD=3cm.
(1)图中共有几条线段;
(2)求线段AC的长;
(3)点E若在直线AD上,且AE=2cm,求BE的长.
方法或规律点拨
本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.
巩固练习
1.(2022·陕西·西安市雁塔区第二中学七年级阶段练习)如图,是的中点,是的中点,下列等式不正确的是( )
A.B.
C.D.
2.(2022·重庆·西南大学附中七年级期末)如图,点为线段的中点,点为的中点,若,,则线段的长( )
A.7B.C.6D.5
3.(2022·云南保山·七年级期末)如图,点M是AB的中点,点N是BD的中点,AB=6cm,BC=10cm,CD=8cm.则MN的长为( )
A.12cmB.11cmC.13cmD.10cm
4.(2022·贵州铜仁·七年级期末)己知点M是线段AB上一点,若,点N是直线AB上的一动点,且,则的( )
A.B.C.1或D.或2
5.(2022·安徽·桐城市第二中学七年级期末)已知线段AB=10cm,线段AC=16cm,且AB、AC在同一条直线上,点B在A、C之间,此时AB、AC的中点M、N之间的距离为( )
A.13cmB.6cmC.3cmD.1.5cm
6.(2022·山东烟台·期末)已知点在线段所在直线上,下列关系式:①,②,③,④.其中不能确定是中点的有______.(只填序号)
7.(2022·山西晋城·七年级期末)如图,如果小明在B,C之间经过D地,且C,D之间相距,则可以表示A,D之间的距离是______.
8.(2022·河南信阳·七年级期末)如图,线段AB=15cm,点C是AB上的一点,BC=3cm,点D是AC的中点,则线段BD的长为_________cm.
9.(2022·江西省丰城中学七年级期中)已知数轴上A点表示的数是a,B点表示的数是b,且a,b满足式子.
(1)写出______,______.
(2)将数轴上线段剪下来,并把这条线段沿着某点折叠,然后在重叠部分某处剪一刀得到三条线段,若这三条线段的长度之比为1:2:2,求折痕处对应的点所表示的数.
10.(2022·山东·单县湖西学校七年级期中)如图,A、B、C、D四点在一条直线上,根据图形填空:
(1) + + ;
(2) ;
(3) ;
(4)若,B是线段的中点,,求线段AB的长.
11.(2022·广东广州·七年级期末)如图,线段AB=10cm,C是线段AB上一点,AC=4cm,M是AB的中点,N是AC的中点.求:
(1)线段CM的长;
(2)求线段MN的长.
12.(2022·山东济南·期末)如图,点C是线段AB上的一点,点M是线段AC的中点,点N是线段BC的中点.
(1)如果,,求BC的长;
(2)如果,求AB的长.
13.(2022·河南·潢川县第二中学七年级期末)如图,已知点C在线段AB上,点M,N分别在线段AC与线段BC上,且MC,BN=2NC.
(1)若AC=9,BC=6,求线段MN的长;
(2)若MC:NC=5:2,MN=7,求线段AB的长.
14.(2022·江苏扬州·七年级期末)如果一点在由两条公共端点的线段组成的一条折线上且把这条折线分成长度相等的两部分,这点叫做这条折线的“折中点”.如图,点D是折线A﹣C﹣B的“折中点”,请解答以下问题:
(1)当AC>BC时,点D在线段 上;当AC=BC时,点D与 重合;当AC<BC时,点D在线段 上;
(2)当AC<BC时,若E为线段AC中点,EC=8cm,CD=6cm,求CB的长度.
15.(2022·山东东营·期末)如图所示,点在线段上,点,分别为,的中点.
(1)若,,求线段,的长;
(2)若点在线段的延长线上,且满足,点,分别是线段,的中点,请画出图形,并用的式子表示的长度.
16.(2022·山东烟台·期末)如图,,C是的中点,D是线段上一点,且.
(1)求线段的长度;
(2)请用尺规在线段上作点E,使,并求线段的长度(保留痕迹,不写作法).
17.(2022·山东烟台·期中)老师留给学生这样一道数学巩固性作业:如图线段,点O是线段上一点,C,D分别是线段、的中点.请你帮忙解决以下问题.
(1)求线段的长.
(2)小军完成作业(1)后,在反思过程中突发奇想:若把“点O是线段上一点”改为“点O是线段延长线上一点”,其他条件不变,如何画图?线段的长又是多长?
18.(2022·全国·七年级专题练习)如图,P是线段AB上一点,AB=18cm,C,D两动点分别从点P,B同时出发沿射线BA向左运动,到达点A处即停止运动.
(1)若点C,D的速度分别是1cm/s,2cm/s.
①当动点C,D运动了2s,且点D仍在线段PB上时,AC+PD=_________cm;
②若点C到达AP中点时,点D也刚好到达BP的中点,则AP∶PB=_________;
(2)若动点C,D的速度分别是1cm/s,3cm/s,点C,D在运动时,总有PD=3AC,求AP的长度.
考点5:与线段的有关动点问题
典例:(2022·贵州黔西·七年级期末)已知点在线段上,,点、在直线上,点在点的左侧.若,,线段在线段上移动.
(1)如图1,当为中点时,求的长;
(2)点(异于,,点)在线段上,,,求的长.
方法或规律点拨
本题考查了两点间的距离,熟知各线段之间的和、差及倍数关系是解答的关键.本题较难,需要想清楚各种情况是否存在.
巩固练习
1.(2022·山东青岛·期末)如图,动点B在线段AD上,沿以2cm/s的速度往返运动1次,C是线段BD的中点,,设点B的运动时间为t秒.
(1)当时,
①________cm;
②求线段CD的长度.
(2)用含t的代数式表示运动过程中线段AB的长度.
2.(2022·广东江门·七年级期末)如图,已知长方形ABCD的长米,宽米,x,y满足,一动点P从A出发以每秒1米的速度沿着运动,另一动点Q从B出发以每秒2米的速度沿运动,P,Q同时出发,运动时间为t.
(1)______________,______________.
(2)当时,求的面积;
(3)当P,Q都在DC上,且PQ距离为1时,求t的值
3.(2022·河南许昌·七年级期末)如图1,已知线段,点M是线段上一点,点C在线段上,点D在线段上,C、D两点分别从M、B出发以的速度沿直线运动,运动方向如箭头所示,其中a、b满足条件:.
(1)直接写出:____________,_____________;
(2)若,当点C、D运动了,求的值;
(3)如图2,若,点N是直线上一点,且,求与的数量关系.
4.(2022·陕西咸阳·七年级期末)线段AB=16,C,D是线段AB上的两个动点(点C在点D的左侧),且CD=2,E为BC的中点.
(1)如图1,当AC=4时,求DE的长.
(2)如图2,F为AD的中点.点C,D在线段AB上移动的过程中,线段EF的长度是否会发生变化,若会,请说明理由;若不会,请求出EF的长.
5.(2022·安徽合肥·七年级期末)线段AB=10,AB上有一动点C,以每秒2个单位的速度,按A一B一A的路径从点A出发,到达点B后又返回到点A停止,设运动时间为t(0≤t≤10)秒.
(1)当t=6时,AC= .
(2)用含t的式子表示线段AC的长;
当0≤t≤5时,AC= ;
当5<t≤10时,AC= .
(3)M是AC的中点,N是BC的中点,在点C运动的过程中,MN的长度是否发生变化?若不变化,求出MN的长,
6.(2022·吉林·长春市绿园区教师进修学校七年级期末)如图,在长方形ABCD中,,,动点P从点A出发,以每秒1cm的速度沿折线A→B→C运动,到点C停止;同时动点Q从点B出发,以每秒2cm的速度在B、C间作往复运动,当点P到达终点C时,点Q也随之停止运动.设点P运动的时间是x(秒),的面积是.
(1)点Q共运动______秒.
(2)当点P沿折线A→B→C运动时,用含x的代数式表示线段的长.
(3)用含x的代数式表示S.
(4)当P、Q两点相遇时,直接写出x的值.
7.(2022·辽宁大连·七年级期末)如图,在直线l上顺次取A、B、C三点,已知,点M、N分别从A、B两点同时出发向点C运动.当其中一动点到达C点时,M、N同时停止运动.已知点M的速度为每秒2个单位长度,点N速度为每秒1个单位长度,设运动时间为t秒.
(1)用含t的代数式表示线段的长度为________;
(2)当t为何值时,M、N两点重合?
(3)若点Р为中点,点Q为中点.问:是否存在时间t,使长度为5?若存在,请说明理由.
8.(2022·山东聊城·七年级期末)如图,P是线段上一点,,C,D两点分别从P、B出发以的速度沿直线向左运动(C在线段上,D在线段上),运动的时间为t.
(1)当时,,请求出的长;
(2)当时,,请求出的长;
(3)若C、D运动到任一时刻时,总有,请求出长;
9.(2022·黑龙江哈尔滨·七年级期末)如图1,线段AB长为24个单位长度,动点P从A出发,以每秒2个单位长度的速度沿射线AB运动,M为AP的中点,设P的运动时间为x秒.
(1)P在线段AB上运动,当时,求x的值.
(2)当P在线段AB上运动时,求的值.
(3)如图2,当P在AB延长线上运动时,N为BP的中点,MN的长度是否发生变化?如不变,求出MN的长度.如变化,请说明理由.
10.(2022·江苏苏州·七年级期末)如图所示.点A,B,C是数轴上的三个点,且A,B两点表示的数互为相反数,,.
(1)点A表示的数是______;
(2)若点P从点B出发沿着数轴以每秒2个单位的速度向左运动,则经过______秒时,点C恰好是BP的中点;
(3)若点Q从点A出发沿着数轴以每秒1个单位的速度向右运动,线段QB的中点为M,当时,则点Q运动了多少秒?请说明理由.
11.(2022·陕西·交大附中分校七年级期末)如图,线段AB=5cm,AC:CB=3:2,点P以0.5cm/s的速度从点A沿线段AC向点C运动;同时点Q以1cm/s从点C出发,在线段CB上做来回往返运动(即沿C→B→C→B→…运动),当点P运动到点C时,点P、Q都停止运动,设点P运动的时间为t秒.
(1)当t=1时,PQ= cm;
(2)当t为何值时,点C为线段PQ的中点?
(3)若点M是线段CQ的中点,在整个运动过程中,是否存在某个时间段,使PM的长度保持不变?如果存在,求出PM的长度;如果不存在,请说明理由.
12.(2022·贵州黔西·七年级期末)【阅读】我们知道,数轴上原点右侧的数是正数,越往右走,数字越大,原点左侧则相反.于是,我们可以假设:若点P从原点出发,沿数轴的正方向以每秒3个单位长度的速度运动,则t秒后点P表示的数是;反之,若点P从原点出发,沿数轴的负方向以每秒2个单位长度的速度运动,则t秒后点P表示的数是.
【探究】已知数轴上两点表示的数分别为,且分别为.
(1)如图1,若点P和点Q分别从点同时出发,都沿数轴的负方向运动,点P的运动速度为每秒2个单位长度,点Q的运动速度为每秒6个单位长度,设运动的时间为t秒.
①t秒后,点P表示的数是_______,点Q表示的数是________;
②当两点之间的距离为4时,则t的值为_______.
(2)如图2,若点P从点A出发,沿数轴的正方向以每秒2个单位长度的速度运动,到点B时停止运动,分别是线段的中点,则在运动过程中,线段的长度是否为定值?若是,请直接写出线段的长度;若不是,请说明理由.
13.(2022·河南·郑州中学七年级期末)如图,点C是线段AB上的一点,线段AC=8m,.机器狗P从点A出发,以6m/s的速度向右运动,到达点B后立即以原来的速度返回;机械猫Q从点C出发,以2m/s的速度向右运动,设它们同时出发,运动时间为xs.当机器狗P与机械猫Q第二次相遇时,机器狗和机械猫同时停止运动.
(1)BC=______m,AB=______m;
(2)试通过计算说明:当x为何值时,机器狗P在点A与机械猫Q的中点处?
(3)当x为何值时,机器狗和机械猫之间的距离PQ=2m?请直接写出x的值.
14.(2022·广西桂林·七年级期末)如图,在直线AB上,线段,动点P从A出发,以每秒2个单位长度的速度在直线AB上运动.M为AP的中点,N为BP的中点,设点P的运动时间为t秒.
(1)若点P在线段AB上的运动,当时, ;
(2)若点P在射线AB上的运动,当时,求点P的运动时间t的值;
(3)当点P在线段AB的反向延长线上运动时,线段AB、PM、PN有怎样的数量关系?请写出你的结论,并说明你的理由.
15.(2022·湖北省直辖县级单位·七年级期末)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合,研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A、B两点之间的距离AB=|a﹣b|.线段AB的中点表示的数为.
如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为t秒(t>0).
(1)填空:
①A、B两点之间的距离AB= ,线段AB的中点表示的数为 .
②用含t的代数式表示:t秒后,点P表示的数为 ;点Q表示的数为 .
③当t= 时,P、Q两点相遇,相遇点所表示的数为 .
(2)当t为何值时,PQ=AB.
(3)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.
能力提升
一、单选题(每题3分)
1.依据“射线AB与射线AC是同一条射线”画图,正确的是( )
A.B.C.D.
2.下列说法中,正确的是( )
A.直线的一半是射线B.画射线AB=3cm
C.线段AB的长度就是A,B两点间的距离D.如果AB=BC=CD,那么AD=3AB
3.(2022·黑龙江·大庆市庆新中学期末)O、P、Q是平面上的三点,PQ=20 cm,OP+OQ=30cm,那么下列结论一定正确的是( )
A.O点在直线PQ外B.O点在直线PQ上
C.O点不能在直线PQ上D.O点可能在直线PQ上
【答案】D
【分析】根据O、P、Q是平面上的三点,PQ=20cm,OP+OQ=30cm>20cm,可得O点不能在线段PQ上,但点O可能在直线PQ上,也可能在直线PQ外,即可求解.
【详解】解:∵O、P、Q是平面上的三点,PQ=20cm,OP+OQ=30cm>20cm,
∴O点不能在线段PQ上,但点O可能在直线PQ上,也可能在直线PQ外.
故选:D.
【点睛】本题主要考查了点与直线的位置关系,解答本题的关键是熟练掌握线段长度之间的关系,为了更好的判断可根据题意动手操作一下更明了.
4.(2022·山东淄博·期中)如图,已知线段a,b.按如下步骤完成尺规作图,则的长是( )
①作射线;
②在射线上截取;
③在线段上截取.
A.B.C.D.
5.(2021·江苏·七年级专题练习)平面内两两相交的6条直线,交点个数最少为m个,最多为n个,则等于( )
A.12B.16C.20D.22
6.(2022·全国·七年级单元测试)如图,直线l上有A,B,C,D四点,点P从点A的左侧沿直线l从左向右运动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,点P就称为这两个点的黄金伴侣点,例:若PA=PB,则在点P从左向右运动的过程中,点P成为黄金伴侣点的机会有( )
A.4次B.5次C.6次D.7次
二、填空题(每题3分)
7.(2021·吉林省第二实验高新学校七年级阶段练习)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是 _____.
8.(2021·山东·泰安市泰山区大津口中学七年级阶段练习)如图是一段高铁行驶路线图,图中字母表示的5个点表示5个车站,在这段路线上往返行车,需印制________种车票(任何两站之间,往返两种车票),需要__________种不同的票价.
9.(2022·河南开封·七年级期末)直线AB,BC,CA的位置关系如图所示,下列语句:①点A在直线BC上;②直线BC经过点B;③直线AC,BC交于点C;④点C在直线AB外;⑤图中共有12条射线.以上表述正确的有___.(只填写序号)
10.(2022·山东潍坊·七年级期中)如图,点C,D在线段AB上,且,点E是线段AB的中点.若,则CE的长为 _____.
11.(2021·黑龙江·哈尔滨市萧红中学校七年级阶段练习)已知点是线段上的一点,且将线段分成3∶2两部分,点为线段的中点,,则线段的长为___________cm.
12.(2022·山东枣庄·七年级期末)如图,B、C两点把线段MN分成三部分,其比为,点P是MN的中点,,则MN的长为______cm.
三、解答题(13题5分,14题6分,15题7分)
13.(2021·黑龙江·哈尔滨市萧红中学校七年级阶段练习)如图,平面上有四个点、、、,根据下列语句画图
(1)直线;
(2)画射线;
(3)连接、;
(4)在平面内找一点,使点到、、、四个点的距离和最小.
14.(2022·全国·七年级课时练习)已知点C在线段AB上,,点D、E在直线AB上,点D在点E的左侧.若,,线段DE在线段AB上移动.
(1)如图1,当E为BC中点时,求AD的长;
(2)点F(异于A,B,C点)在线段AB上,,,求AD的长.
15.(2021·江苏·启东市长江中学七年级期中)已知多项式是关于x的二次多项式,且二次项系数为b,数轴上两点A,B对应的数分别为a,b.
(1)a=___________,b=___________,线段AB=___________;
(2)若数轴上有一点C,使得,点M为的中点,求的长;
(3)有一动点G从点A出发,以1个单位每秒的速度向终点B运动,同时动点H从点B出发,以个单位每秒的速度在数轴上作同向运动,设运动时间为t秒(),点D为线段的中点,点F为线段的中点,点E在线段上且,在G,H的运动过程中,求的值.
名称
不同点
联系
共同点
延伸性
端点数
线段
不能延伸
2
线段向一方延长就成射线,向两方延长就成直线
都是直的线
射线
只能向一方延伸
1
直线
可向两方无限延伸
无
数学七年级上册4.2 直线、射线、线段测试题: 这是一份数学七年级上册<a href="/sx/tb_c10211_t7/?tag_id=28" target="_blank">4.2 直线、射线、线段测试题</a>,共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
人教版七年级数学上册同步讲义专题4.2 直线、射线、线段(教师版)(人教版): 这是一份人教版七年级数学上册同步讲义专题4.2 直线、射线、线段(教师版)(人教版),共90页。试卷主要包含了直线,点和直线的位置关系有两种,线段的性质,线段的中点,直线的性质等内容,欢迎下载使用。
人教版七年级数学上册同步讲义专题4.2 直线、射线、线段(学生版)(人教版): 这是一份人教版七年级数学上册同步讲义专题4.2 直线、射线、线段(学生版)(人教版),共26页。试卷主要包含了直线,点和直线的位置关系有两种,线段的性质,线段的中点,直线的性质等内容,欢迎下载使用。