重庆市江津第四中学2024年数学九上开学经典模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=( )
A.35°B.45°C.50°D.55°
2、(4分)如图的中有一正方形,其中在上,在上,直线分别交于两点. 若,则的长度为()
A.B.C.D.
3、(4分)方程的解是( )
A.B.C.D.
4、(4分)如图,∠BAC=90°,四边形ADEB、BFGC、CHIA均为正方形,若 S四边形ADEB=6,S四边形BFGC=18,四边形CHIA的周长为( )
A.4B.8C.12D.8
5、(4分)如图:点E、F为线段BD的两个三等分点,四边形AECF是菱形,且菱形AECF的周长为20,BD为24,则四边形ABCD的面积为( )
A.24B.36C.72D.144
6、(4分)如图,中,,连接,将绕点旋转,当(即)与交于一点,(即)与交于一点时,给出以下结论:①;②;③;④的周长的最小值是.其中正确的是( )
A.①②③B.①②④C.②③④D.①③④
7、(4分)下列分式中,是最简分式的是
A.B.C.D.
8、(4分)若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形ABCD中,AB=6,BC=8,E是BC上一点(不与B、C重合),点P在边CD上运动,M、N分别是AE、PE的中点,线段MN长度的最大值是_____.
10、(4分)若,,则的值是__________.
11、(4分)频数直方图中,一小长方形的频数与组距的比值是6,组距为3,则该小组的频数是_____.
12、(4分)若一个直角三角形的两直角边长分别是1、2,则第三边长为____________。
13、(4分)某电信公司推出两种上宽带的网的按月收费方式,两种方式都采取包时上网,即上网时间在一定范围内,收取固定的月使用费;超过该范围,则加收超时费.若两种方式所收费用(元)与上宽带网时间(时)的函数关系如图所示,且超时费都为1.15元/分钟,则这两种方式所收的费用最多相差__________元.
三、解答题(本大题共5个小题,共48分)
14、(12分)阅读下面的解题过程,解答后面的问题:
如图,在平面直角坐标系中, , ,为线段的中点,求点的坐标;
解:分别过,做轴的平行线,过,做轴的平行线,两组平行线的交点如图所示,设,则,,
由图可知:
线段的中点的坐标为
(应用新知)
利用你阅读获得的新知解答下面的问题:
(1)已知,,则线段的中点坐标为
(2)平行四边形中,点,,的坐标分别为,,,利用中点坐标公式求点的坐标。
(3)如图,点在函数的图象上, ,在轴上,在函数的图象上 ,以,,,四个点为顶点,且以为一边构成平行四边形,直接写出所有满足条件的点坐标。
15、(8分)如图,在中,点、分别在边、上,且AE=CF ,连接,请只用无刻度的直尺画出线段的中点,并说明这样画的理由.
16、(8分)按指定的方法解下列一元二次方程:
(1)(配方法) (2)(公式法)
17、(10分)分解因式:
(1)x(x+y)(x-y)-x(x+y)2
(2)(x-1)2+2(1-x)•y+y2
18、(10分)如图1,在正方形ABCD中,点E是AB上一点,点F是AD延长线上一点,且DF=BE,连接CE、CF.
(1)求证:CE=CF.
(2)在图1中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗;为什么;
(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题,如图2,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,且∠DCE=45°.
①若AE=6,DE=10,求AB的长;
②若AB=BC=9,BE=3,求DE的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在矩形ABCD中,AD=9cm,AB=3cm,将其折叠,使点D与点B重合,则重叠部分(△BEF)的面积为_________cm2.
20、(4分)在某校举行的“汉字听写”大赛中,六名学生听写汉字正确的个数分别为:35,31,32,31,35,31,则这组数据的众数是_____.
21、(4分)如图,四边形 ABCD 中,E、F、G、H 分别为各边的中点,顺次连 结 E、F、G、H,把四边形 EFGH 称为中点四边形.连结 AC、BD,容易证明:中点 四边形 EFGH 一定是平行四边形.
(1)如果改变原四边形 ABCD 的形状,那么中点四边形的形状也随之改变,通过探索 可以发现:当四边形 AB CD 的对角线满足 AC=BD 时,四边形 EFGH 为菱形;当四边形ABCD 的对角线满足 时,四边形 EFGH 为矩形;当四边形 ABCD 的对角线满足 时,四边形 EFGH 为正方形.
(2)试证明:S△AEH+S△CFG= S□ ABCD
(3)利用(2)的结论计算:如果四边形 ABCD 的面积为 2012, 那么中点四边形 EFGH 的面积是 (直接将结果填在 横线上)
22、(4分)数学家们在研究15,12,10这三个数的倒数时发现:-=-.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x,5,3(x>5),则x=________.
23、(4分)若分式的值为零,则x的值为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,边长为的大正方形中有一个边长为的小正方形(),图2是由图1中阴影部分拼成的一个长方形.
(1)观察图1、图2,当用不同的方法表示图形中阴影部分的面积时,可以获得一个因式分解公式,则这个公式是_______;
(2)如果大正方形的边长比小正方形的边长多3,它们的面积相差57,试利用(1)中的公式,求,的值.
25、(10分)如图,等腰△ABC中,已知AC=BC=2, AB=4,作∠ACB的外角平分线CF,点E从点B沿着射线BA以每秒2个单位的速度运动,过点E作BC的平行线交CF于点F.
(1)求证:四边形BCFE是平行四边形;
(2)当点E是边AB的中点时,连接AF,试判断四边形AECF的形状,并说明理由;
(3)设运动时间为t秒,是否存在t的值,使得以△EFC的其中两边为邻边所构造的平行四边形恰好是菱形?不存在的,试说明理由;存在的,请直接写出t的值.答:t=________.
26、(12分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:
请根据图表信息回答下列问题:
(1)频数分布表中的a= ,b= ;
(2)将频数分布直方图补充完整;
(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
延长PF交AB的延长线于点G.根据已知可得∠B,∠BEF,∠BFE的度数,再根据余角的性质可得到∠EPF的度数,从而不难求得∠FPC的度数.
【详解】
解:延长PF交AB的延长线于点G.
在△BGF与△CPF中,
∴△BGF≌△CPF(ASA),
∴GF=PF,
∴F为PG中点.
又∵由题可知,∠BEP=90°,
∴(直角三角形斜边上的中线等于斜边的一半),
∵(中点定义),
∴EF=PF,
∴∠FEP=∠EPF,
∵∠BEP=∠EPC=90°,
∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,
∵四边形ABCD为菱形,
∴AB=BC,∠ABC=180°﹣∠A=70°,
∵E,F分别为AB,BC的中点,
∴BE=BF,
易证FE=FG,
∴∠FGE=∠FEG=55°,
∵AG∥CD,
∴∠FPC=∠EGF=55°
故选:D.
此题主要考查了菱形的性质的理解及运用,灵活应用菱形的性质是解决问题的关键.
2、D
【解析】
由DE∥BC可得求出AE的长,由GF∥BN可得,将AE的长代入可求得BN.
【详解】
解:∵四边形DEFG是正方形,
∴DE∥BC,GF∥BN,且DE=GF=EF=1,
∴△ADE∽△ACB,△AGF∽△ANB,
∴①,②,
由①可得,,解得:,
把代入②,得:,
解得:,
故选择:D.
本题主要考查正方形的性质及相似三角形的判定与性质,根据相似三角形的性质得出AE的长是解题的关键.
3、C
【解析】
根据方程即可得出两个一元一次方程,求出方程的解即可.
【详解】
解:由,得
x=0,x+2=0
∴
故选C.
本题考查了解一元二次方程. 能把一元二次方程转化为一元一次方程是解此题的关键.
4、B
【解析】
外围正方形的面积就是斜边和一直角边的平方,实际上是求另一直角边的平方,用勾股定理即可解答.
【详解】
解:根据勾股定理我们可以得出:
AB2+AC2=BC2
S正方形ADEB= AB2=6,S正方形BFGC= BC2=18,
S正方形CHIA= AC2=18-6=12,
∴AC=,
∴四边形CHIA的周长为==8
故选:B.
本题主要考查了正方形的面积公式和勾股定理的应用.只要搞清楚直角三角形的斜边和直角边本题就容易多了.
5、C
【解析】
根据菱形的对角线互相垂直平分可得AC⊥BD,AO=OC,EO=OF,再求出BO=OD,证明四边形ABCD是菱形,根据菱形的四条边都相等求出边长AE,根据菱形的对角线互相平分求出OE,然后利用勾股定理列式求出AO,再求出AC,最后根据四边形的面积等于对角线乘积的一半列式计算即可得解.
【详解】
解:如图,连接AC交BD于点O,
∵四边形AECF是菱形,
∴AC⊥BD,AO=OC,EO=OF,
又∵点E、F为线段BD的两个三等分点,
∴BE=FD,
∴BO=OD,
∵AO=OC,
∴四边形ABCD为平行四边形,
∵AC⊥BD,
∴四边形ABCD为菱形;
∵四边形AECF为菱形,且周长为20,
∴AE=5,
∵BD=24,点E、F为线段BD的两个三等分点,
∴EF=8,OE=EF=×8=4,
由勾股定理得,AO===3,
∴AC=2AO=2×3=6,
∴S四边形ABCD=BD•AC=×24×6=72;
故选:C.
本题考查了菱形的判定与性质,主要利用了菱形的对角线互相垂直平分的性质,勾股定理以及利用菱形对角线求面积的方法,熟记菱形的性质与判定方法是解题的关键.
6、B
【解析】
根据题意可证△ABE≌△BDF,可判断①②③,由△DEF的周长=DE+DF+EF=AD+EF=4+EF,则当EF最小时△DEF的周长最小,根据垂线段最短,可得BE⊥AD时,BE最小,即EF最小,即可求此时△BDE周长最小值.
【详解】
解:∵AB=BC=CD=AD=4,∠A=∠C=60°
∴△ABD,△BCD为等边三角形,
∴∠A=∠BDC=60°,
∵将△BCD绕点B旋转到△BC'D'位置,
∴∠ABD'=∠DBC',且AB=BD,∠A=∠DBC',
∴△ABE≌△BFD,
∴AE=DF,BE=BF,∠AEB=∠BFD,
∴∠BED+∠BFD=180°,
故①正确,③错误;
∵∠ABD=60°,∠ABE=∠DBF,
∴∠EBF=60°,
故②正确
∵△DEF的周长=DE+DF+EF=AD+EF=4+EF,
∴当EF最小时,∵△DEF的周长最小.
∵∠EBF=60°,BE=BF,
∴△BEF是等边三角形,
∴EF=BE,
∴当BE⊥AD时,BE长度最小,即EF长度最小,
∵AB=4,∠A=60°,BE⊥AD,
∴EB=,
∴△DEF的周长最小值为4+,
故④正确,
综上所述:①②④说法正确,
故选:B.
本题考查了旋转的性质,等边三角形的性质,平行四边形的性质,最短路径问题,关键是灵活运用这些性质解决问题.
7、D
【解析】
最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.
【详解】
A、=,错误;
B、=,错误;
C、=,错误;
D、是最简分式,正确.
故选D.
此题考查最简分式问题,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.
8、A
【解析】
∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定也无需确定).
a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,
观察各选项,只有A选项符合.故选A.
【详解】
请在此输入详解!
二、填空题(本大题共5个小题,每小题4分,共20分)
9、5
【解析】
由条件可先求得MN=AP,则可确定出当P点运动到点C时,PA有最大值,即可求得MN的最大值
【详解】
∵M为AE中点,N为EP中点
∴MN为△AEP的中位线,
∴MN= AP
若要MN最大,则AP最大.
P在CD上运动,当P运动至点C时PA最大,
此时PA=CA是矩形ABCD的对角线
AC==10,
MN的最大值= AC=5
故答案为5
此题考查了三角形中位线定理和矩形的性质,解题关键在于先求出MN=AP
10、2
【解析】
提取公因式因式分解后整体代入即可求解.
【详解】
.
故答案为:2.
此题考查因式分解的应用,解题关键在于分解因式.
11、1
【解析】
根据“频数:组距=2且组距为3”可得答案.
【详解】
根据题意知,该小组的频数为2×3=1.
故答案为:1.
本题考查了频数分布直方图,解题的关键是根据题意得出频数:组距=2.
12、
【解析】
根据勾股定理计算即可.
【详解】
由勾股定理得,第三边长=,
故答案为:.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
13、
【解析】
根据题意可以求得两种方式对应的函数解析式,由图象可知,当时,这两种方式所收的费用的差先减小后增大,当时.这两种方式所收的费用的差不变,从而可以解答本题.
【详解】
解:由题意可得,
当时,方式一:,
当,方式一:,
当时,方式二:,
当时,方式二:,
当时,,
当时,,
故答案为:2.
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.
三、解答题(本大题共5个小题,共48分)
14、 (1)线段的中点坐标是;(2)点的坐标为;(3)符合条件的点坐标为或.
【解析】
(1)直接套用中点坐标公式,即可得出中点坐标;
(2)根据AC、BD的中点重合,可得出,代入数据可得出点D的坐标;
(3)当AB为该平行四边形一边时,此时CD∥AB,分别求出以AD、BC为对角线时,以AC、BD为对角线的情况可得出点D坐标.
【详解】
解:(1)AB中点坐标为,即AB的中点坐标是:(1,1);
(2)根据平行四边形的性质:对角线互相平分,可知、的中点重合,
由中点坐标公式可得:,
代入数据,得:,
解得:,,所以点的坐标为;
(3)当为该平行四边形一边时,则,对角线为、或、;
故可得:,或,.
故可得或,
,
或
代入到中,可得或.
综上,符合条件的点坐标为或.
本题考查了一次函数的综合题,涉及了中点坐标公式、平行四边形的性质,综合性较强.
15、详见解析
【解析】
连接AC交EF与点O,连接AF,CE.根据AE=CF,AE∥CF可知四边形AECF是平行四边形,据此可得出结论.
【详解】
解:如图:连接AC交EF与点O,点O即为所求.
理由:连接AF,CE,AC.
∵ABCD为平行四边形,
∴AE∥FC.
又∵AE=CF,
∴四边形AECF是平行四边形,
∴OE=OF,
∴点O是线段EF的中点.
本题考查的是作图-基本作图,熟知平行四边形的性质是解答此题的关键.
16、(1),;(2),
【解析】
(1)先把二次项系数化为1,方程两边加上一次项系数一半的平方,把左边变成完全平方式,然后用直接开平方法解即可;
(2)首先确定a,b,c的值,再计算出b2-4ac的值判断方程方程是否有解,若有解,代入公式即可求解.
【详解】
(1)
∴
解得,,;
(2)
在这里,,b=-2,
∴
解得,,
本题考查了解一元二次方程的方法,求根公式法适用于任何一元二次方程,方程的解为:
17、(1)-2xy(x+y);(2)(x-1-y)2
【解析】
(1)提公因式x(x+y),合并即可;
(2)利用完全平方式进行分解.
【详解】
(1)原式=x(x+y)[(x-y)-(x+y)]
=-2xy(x+y)
(2)原式=(x-1)2-2(x-1)y+y2
=(x-1-y)2
本题考查的知识点是提取公因式法因式分解和完全平方式,解题关键是求出多项式里各项的公因式,提公因式.
18、(1)证明见解析;(2)成立;(3)①12;②7.1
【解析】
(1)先判断出∠B=∠CDF,进而判断出△CBE≌△CDE,即可得出结论;
(2)先判断出∠BCE=∠DCF,进而判断出∠ECF=∠BCD=90°,即可得出∠GCF=∠GCE=41°,得出△ECG≌△FCG即可得出结论;
(3)先判断出矩形ABCH为正方形,进而得出AH=BC=AB,
①根据勾股定理得,AD=8,由(1)(2)知,ED=BE+DH,设BE=x,进而表示出DH=10-x,用AH=AB建立方程即可得出结论;
②由(1)(2)知,ED=BE+DH,设DE=a,进而表示出DH=a-3,AD=12-a,AE=6,根据勾股定理建立方程求解即可得出结论.
【详解】
解:(1)在正方形ABCD中,
∵BC=CD,∠B=∠ADC,
∴∠B=∠CDF,
∵BE=DF,
∴△CBE≌△CDF,
∴CE=CF;
(2)成立,由(1)知,△CBF≌△CDE,
∴∠BCE=∠DCF,
∴∠BCE+∠ECD=∠DCF+∠ECD,
∴∠ECF=∠BCD=90°,
∵∠GCE=41°,
∴∠GCF=∠GCE=41°,
∵CE=CF,∠GCE=∠GCF,GC=GC,
∴△ECG≌△FCG,
∴GE=GF,
∴GE=DF+GD=BE+GD;
(3)如图2,过点C作CH⊥AD交AD的延长线于H,
∵AD∥BC,∠B=90°,
∴∠A=90°,
∵∠CHA=90°,
∴四边形ABCH为矩形,
∵AB=BC,
∴矩形ABCH为正方形,
∴AH=BC=AB,
①∵AE=6,DE=10,根据勾股定理得,AD=8,
∵∠DCE=41°,
由(1)(2)知,ED=BE+DH,
设BE=x,
∴10+x=DH,
∴DH=10-x,
∵AH=AB,
∴8+10-x=x+6,
∴x=6,
∴AB=12;
②∵∠DCE=41°,
由(1)(2)知,ED=BE+DH,
设DE=a,
∴a=3+DH,
∴DH=a-3,
∵AB=AH=9,
∴AD=9-(a-3)=12-a,AE=AB-BE=6,
根据勾股定理得,DE2=AD2+AE2,
即:(12-a)2+62=a2,∴a=7.1,
∴DE=7.1.
本题是四边形综合题,考查了矩形的判定,正方形的判定和性质,勾股定理,全等三角形的判定和性质,判断出△ECG≌△FCG是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、7.1cm2
【解析】
已知四边形ABCD是矩形根据矩形的性质可得BC=DC,∠BCF=∠DCF=90°,又知折叠使点D和点B重合,根据折叠的性质可得C′F=CF,在RT△BCF中,根据勾股定理可得BC2+CF2=BF2,即32+(9-BF)2=BF2,解得BF=1,所以△BEF的面积=BF×AB=×1×3=7.1.
点睛:本题考查了翻折变换的性质,矩形的性质,勾股定理,熟记翻折前后两个图形能够重合找出相等的线段、相等的角是解题的关键.
20、1
【解析】
利用众数的定义求解.
【详解】
解:这组数据的众数为1.
故答案为1.
本题考查了众数:一组数据中出现次数最多的数据叫做众数.
21、;(2)详见解析;(3)1
【解析】
(1)若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF=AC,EH=BD,故应有AC=BD.
(2)由相似三角形的面积比等于相似比的平方求解.
(3)由(2)可得S▱EFGH=S四边形ABCD=1
【详解】
(1)解:若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;
若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF= AC,EH=BD,故应有AC=BD;
(2)S△AEH+S△CFG=S四边形ABCD
证明:在△ABD中,
∵EH=BD,
∴△AEH∽△ABD.
∴=()2=
即S△AEH=S△ABD
同理可证:S△CFG=S△CBD
∴S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD;
(3)解:由(2)可知S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD,
同理可得S△BEF+S△DHG=(S△ABC+S△CDA)=S四边形ABCD,
故S▱EFGH=S四边形ABCD=1.
本题考查了三角形的中位线的性质及特殊四边形的判定和性质,相似三角形的性质.
22、1
【解析】
∵x>5∴x相当于已知调和数1,代入得,解得,x=1.
23、1
【解析】
由题意根据分式的值为0的条件是分子为0,分母不能为0,据此可以解答本题.
【详解】
解:,
则x﹣1=0,x+1≠0,
解得x=1.
故若分式的值为零,则x的值为1.
故答案为:1.
本题考查分式的值为0的条件,注意掌握分式为0,分母不能为0这一条件.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)a=11,b=1
【解析】
(1)根据两个图形的面积即可列出等式;
(2)根据题意得到,由面积相差57得到,解a与b组成的方程组求解即可.
【详解】
解:(1)图1阴影面积=,图2的阴影面积=(a+b)(a-b),
∴,
故答案为:;
(2)由题意可得:.
∵.
∴.
∴解得
∴,的值分别是11,1.
此题考查完全平方公式与几何图形的关系,二元一次方程组的实际应用.
25、(1)见解析;(2)四边形AECF是矩形,理由见解析;(3)秒或5秒或2秒
【解析】
(1)已知EF∥BC,结合已知条件利用两组对边分别平行证明BCFE是平行四边形;因为AC=BC,等角对等边,得∠B=∠BAC,CF平分∠ACH,则∠ACF=∠FCH,结合∠ACH=∠B+∠BAC=∠ACF+∠FCH,等量代换得∠FCH=∠B,则同位角相等两直线平行,得BE∥CF,结合EF∥BC,证得四边形BCFE是平行四边形;
(2)先证∠AED=90°,再证四边形AECF是平行四边形,则四边形AECF是平行四边形是矩形; AC=BC,E是AB的中点,由等腰三角形三线合一定理知CE⊥AB,因为四边形BCFE是平行四边形,得CF=BE=AE,AE∥CF,一组对边平行且相等,且有一内角是直角,则四边形AECF是矩形;
(3)分三种情况进行①以EF和CF两边为邻边所构造的平行四边形恰好是菱形时,则邻边BE=BC,这时根据S=vt=2t=, 求出t即可;②以CE和CF两边为邻边所构造的平行四边形恰好是菱形时,过C作CD⊥AB于D,AC=BC,三线合一则BD的长可求,在Rt△BDC中运用勾股定理求出CD的长,把ED长用含t的代数式表示出来,现知EG=CF=EC=EB=2t,在Rt△EDC中,利用勾股定理列式即可求出t;③以CE和EF两边为邻边所构造的平行四边形恰好是菱形时,则CA=AF=BC,此时E与A重合,则2t=AB=4, 求得t值即可.
【详解】
(1)证明:如图1,∵AC=BC,
∴∠B=∠BAC,
∵CF平分∠ACH,
∴∠ACF=∠FCH,
∵∠ACH=∠B+∠BAC=∠ACF+∠FCH,
∴∠FCH=∠B,
∴BE∥CF,
∵EF∥BC,
∴四边形BCFE是平行四边形
(2)解:四边形AECF是矩形,理由是:
如图2,∵E是AB的中点,AC=BC,
∴CE⊥AB,
∴∠AEC=90°,
由(1)知:四边形BCFE是平行四边形,
∴CF=BE=AE,
∵AE∥CF,
∴四边形AECF是矩形
(3)秒或5秒或2秒
分三种情况:
①以EF和CF两边为邻边所构造的平行四边形恰好是菱形时,如图3,
∴BE=BC,即2t=2 ,
t= ;
②以CE和CF两边为邻边所构造的平行四边形恰好是菱形时,如图4,过C作CD⊥AB于D,
∵AC=BC,AB=4,
∴BD=2,
由勾股定理得:CD= = =6,
∵EG2=EC2 , 即(2t)2=62+(2t﹣2)2 ,
t=5;
③以CE和EF两边为邻边所构造的平行四边形恰好是菱形时,如图5,CA=AF=BC,此时E与A重合,
∴t=2,
综上,t的值为秒或5秒或2秒;
故答案为: 秒或5秒或2秒.
本题主要考查平行四边形,矩形,菱形等四边形的性质与证明,熟悉基本定理是解题基础,本题第三问的关键在于能够分情况讨论列出方程.
26、(1)25;0.10;(2)补图见解析;(3)200人.
【解析】
(1)由阅读时间为0<t≤2的频数除以频率求出总人数,确定出a与b的值即可;
(2)补全条形统计图即可;
(3)由阅读时间在8小时以上的百分比乘以2000即可得到结果.
【详解】
解:(1)根据题意得:2÷0.04=50(人),则a=50﹣(2+3+15+5)=25;b=5÷50=0.10;
故答案为25;0.10;
(2)阅读时间为6<t≤8的学生有25人,补全条形统计图,如图所示:
(3)根据题意得:2000×0.10=200(人),则该校2000名学生中评为“阅读之星”的有200人.
此题考查了频率(数)分布表,条形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
课外阅读时间(单位:小时)
频数(人数)
频率
0<t≤2
2
0.04
2<t≤4
3
0.06
4<t≤6
15
0.30
6<t≤8
a
0.50
t>8
5
b
重庆市江津区2024-2025学年数学九上开学统考试题【含答案】: 这是一份重庆市江津区2024-2025学年数学九上开学统考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
重庆市江津聚奎中学联盟2024-2025学年九上数学开学教学质量检测试题【含答案】: 这是一份重庆市江津聚奎中学联盟2024-2025学年九上数学开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
重庆市第八中学2025届九上数学开学经典试题【含答案】: 这是一份重庆市第八中学2025届九上数学开学经典试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。