![浙江省舟山市南海实验中学2025届数学九上开学监测模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16295178/0-1729994945422/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![浙江省舟山市南海实验中学2025届数学九上开学监测模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16295178/0-1729994945499/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![浙江省舟山市南海实验中学2025届数学九上开学监测模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16295178/0-1729994945533/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
浙江省舟山市南海实验中学2025届数学九上开学监测模拟试题【含答案】
展开这是一份浙江省舟山市南海实验中学2025届数学九上开学监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列因式分解错误的是( )
A.2x(x﹣2)+(2﹣x)=(x﹣2)(2x+1)B.x2+2x+1=(x+1)2
C.x2y﹣xy2=xy(x﹣y)D.x2﹣y2=(x+y)(x﹣y)
2、(4分)对于函数y=-2x+5,下列说法正确的是( )
A.图象一定经过(2,-1)B.图象经过一、二、四象限
C.图象与直线y=2x+3平行D.y随x的增大而增大
3、(4分)下列二次根式中能与2合并的是( )
A.B.C.D.
4、(4分)下列各组数中不能作为直角三角形的三边长的是( )
A.3,4,5B.13,14,15C.5,12,13D.15,8,17
5、(4分)如图,l1反映了某公司销售一种医疗器械的销售收入(万元)与销售量(台)之间的关系,l2反映了该公司销售该种医疗器械的销售成本(万元)与销售量(台)之间的关系.当销售收入大于销售成本时,该医疗器械才开始赢利.根据图象,则下列判断中错误的是( )
A.当销售量为4台时,该公司赢利4万元B.当销售量多于4台时,该公司才开始赢利
C.当销售量为2台时,该公司亏本1万元D.当销售量为6台时,该公司赢利1万元
6、(4分)下列等式成立的是( )
A. •=B.=2C.﹣=D.=﹣3
7、(4分)函数的图象可能是( )
A.B.
C.D.
8、(4分)如图4,在中,,点为斜边上一动点,过点作于点 , 于点 ,连结 ,则线段的最小值为
A.1.2B.2.4C.2.5D.4.8
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)关于x的一次函数,当_________时,它的图象过原点.
10、(4分)如果代数式有意义,那么字母x的取值范围是_____.
11、(4分)若关于的分式方程有解,则的取值范围是_______.
12、(4分)阅读下面材料:
在数学课上,老师提出如下问题:
已知:如图,及边的中点.
求作:平行四边形.
①连接并延长,在延长线上截取;
②连接、.
所以四边形就是所求作的平行四边形.
老师说:“小敏的作法正确.
请回答:小敏的作法正确的理由是__________.
13、(4分)如图,ABC的周长为16,⊙O与BC相切于点D,与AC的延长线相切于点E,与AB的延长线相切于点F,则AF的长为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知 BC∥EF,BC=EF,AF=DC.试证明:AB=DE.
15、(8分)如图,一架2.5m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m,如果梯子的顶端A沿墙下滑0.4m,则梯子底端B也外移0.4m吗?为什么?
16、(8分)解方程:
(1) (2)
17、(10分).
18、(10分)如图,在四边形ABCD中,AB∥CD,AC、BD相交于点O,且O是BD的中点.求证:四边形ABCD是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在中,对角线与相交于点,在上有一点,连接,过点作的垂线和的延长线交于点,连接,,,若,,则_________.
20、(4分)对任意的两实数,用表示其中较小的数,如,则方程的解是__________.
21、(4分)在Rt△ABC中,∠ACB=90°,AE,BD是角平分线,CM⊥BD于M,CN⊥AE于N,若AC=6,BC=8,则MN=_____.
22、(4分)在▱ABCD中,若∠A+∠C=270˚,则∠B=_____.
23、(4分)将菱形以点为中心,按顺时针方向分别旋转,,后形成如图所示的图形,若,,则图中阴影部分的面积为__.
二、解答题(本大题共3个小题,共30分)
24、(8分)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x⩾0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数。例如:一次函数y=x−1,它们的相关函数为y= .
(1)已知点A(−5,8)在一次函数y=ax−3的相关函数的图象上,求a的值;
(2)已知二次函数y=−x+4x− .
①当点B(m, )在这个函数的相关函数的图象上时,求m的值;
②当−3⩽x⩽3时,求函数y=−x+4x−的相关函数的最大值和最小值.
25、(10分)图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形.
(2)若DE=4cm,∠EBC=60°,求菱形BCFE的面积。
26、(12分)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.
(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;
(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?
(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
A、原式=(x﹣2)(2x﹣1),错误;
B、原式=(x+1)2,正确;
C、原式=xy(x﹣y),正确;
D、原式=(x+y)(x﹣y),正确,
故选A.
2、B
【解析】
利用一次函数的性质逐个分析判断即可得到结论.
【详解】
A、把x=2代入代入y=-2x+5,得y=1≠-1,所以A不正确;
B、∵k=-2<0,b=5>0,∴图象经过一、二、四象限,所以B正确;
C、∵y=-2x+5与y=2x+3的k的值不相等,
∴图象与直线y=2x+3不平行,所以C不正确;
D、∵k=-2<0,∴y随x的增大而减小,所以D不正确;
故选:B.
本题考查了两直线相交或平行,一次函数的性质,一次函数图象上点的坐标特征,综合性较强,难度适中.
3、B
【解析】
先化简选项中各二次根式,然后找出被开方数为3的二次根式即可.
【详解】
A、=2,不能与2合并,故该选项错误;
B、能与2合并,故该选项正确;
C、=3不能与2合并,故该选项错误;
D、=3不能与2合并,错误;
故选B.
本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键.
4、B
【解析】
分别把选项中的三边平方后,根据勾股定理逆定理即可判断能够构成直角三角形.
【详解】
解:A选项中,,∴能构成直角三角形;
B选项中,,∴不能构成直角三角形;
C选项中,,∴能构成直角三角形;
D选项中,,∴能构成直角三角形;
故选B.
本题主要考查构成直角三角形的条件,掌握勾股定理的逆定理是解题的关键.
5、A
【解析】
利用图象交点得出公司盈利以及公司亏损情况.
【详解】
解:A、当销售量为4台时,该公司赢利0万元,错误;
B、当销售量多于4台时,该公司才开始赢利,正确;
C、当销售量为2台时,该公司亏本1万元,正确;
D、当销售量为6台时,该公司赢利1万元,正确;
故选A.
此题主要考查了一次函数的应用,熟练利用数形结合得出是解题关键.
6、B
【解析】
利用二次根式的乘法法则对、进行判断;利用二次根式的加减法对进行判断;利用二次根式的性质对进行判断.
【详解】
解:、原式,所以选项错误;
、原式,所以选项正确;
、原式,所以选项错误;
、原式,所以选项错误.
故选:.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
7、C
【解析】
分x<0,x>0两段来分析.
【详解】
解:当x<0时,y=-|k|x,此时-|k|<0,∴y随x的增大而减小,又y>0,所以函数图像在第二象限,排除A,D;
当x>0时,y=|k|x,此时|k|>0,∴y随x的增大而增大,又y>0,所以函数图像在第一象限,排除B;故C正确.
故选:C.
本题主要考查一次函数的图像与性质,掌握基本性质是解题的关键.
8、B
【解析】
连接PC,证明四边形PECF是矩形,从而有EF=CP,当CP⊥AB时,PC最小,利用三角形面积解答即可.
【详解】
解:连接PC,
∵PE⊥AC,PF⊥BC,
∴∠PEC=∠PFC=∠C=90°,
∴四边形ECFP是矩形,
∴EF=PC,
∴当PC最小时,EF也最小,
即当CP⊥AB时,PC最小,
∵AC=1,BC=3,
∴AB=5,
∴PC的最小值为:
∴线段EF长的最小值为2.1.
故选B.
本题考查的是矩形的判定与性质,关键是根据矩形的性质和三角形的面积公式解答.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
由一次函数图像过原点,可知其为正比例函数,所以,求出k值即可.
【详解】
解: 函数图像过原点
该函数为正比例函数
故答案为:
本题考查了一次函数与正比例函数,一次函数,当时,为正比例函数,正比例函数图像过原点,正确理解正比例函数的概念及性质是解题的关键.
10、x⩾−2且x≠1
【解析】
先根据分式及二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.
【详解】
∵代数式有意义,
∴,
解得x⩾−2且x≠1.
故答案为:x⩾−2且x≠1.
本题考查分式有意义的条件和二次根式有意义的条件,解题的关键是掌握分式有意义的条件和二次根式有意义的条件.
11、
【解析】
分式方程去分母转化为整式方程,表示出分式方程的解,确定出m的范围即可.
【详解】
解:,
去分母,得:,
整理得:,
显然,当时,方程无解,
∴;
当时,,
∴,
解得:;
∴的取值范围是:;
故答案为:.
此题考查了分式方程的解,始终注意分母不为0这个条件.
12、对角线互相平分的四边形是平行四边形
【解析】试题解析:∵是边的中点,
∴,
∵,
∴四边形是平行四边形,
则依据:对角线互相平分的四边形是平行四边形.
故答案为:对角线互相平分的四边形是平行四边形.
13、1
【解析】
根据切线长定理得出AF=AE,CE=CD,BF=BD,再根据△ABC的周长等于16得出AF+AE=16,即可求出AE.
【详解】
解:如图,
∵AB、AC的延长线与圆分别相切于点E、F,
∴AF=AE,
∵圆O与BC相切于点D,
∴CE=CD,BF=BD,
∴BC=DC+BD=CE+BF,
∵△ABC的周长等于16,
∴AB+AC+BC=16,
∴AB+AC+CE+BF=16,
∴AF+AE=16,
∴AF=1.
故答案为1
此题考查了切线长定理,掌握切线长定理即从圆外一点引圆的两条切线,切线长相等是本题的关键.
三、解答题(本大题共5个小题,共48分)
14、证明见解析
【解析】
首先根据平行线的性质可得∠BCA=∠EFD,再根据AF=DC可得AC=DF,然后可以证明△ABC≌△DEF,再根据全等三角形的性质可得AB=DE.
【详解】
∵BC∥EF (已知),∴∠BCA=∠EFD( 两直线平行,内错角相等)
∵AF=DC(已知),∴AF+FC=DC+FC,即 AC=DF.
在△ABC和△DEF中,∵,∴△ABC≌△DEF( SAS),∴AB=DE( 全等三角形的对应边相等).
全等三角形的判定与性质,以及平行线的性质,关键是掌握证明三角形全等的判定方法:SSS、ASA、SAS、AAS.
15、不是,理由见解析.
【解析】
先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD-OB即可得出结论.
【详解】
解:如图,设梯子下滑至CD,
∵Rt△OAB中,AB=2.5m,AO=2.4m,
∴OB=m,
同理,Rt△OCD中,
∵CD=2.5m,OC=2.4-0.4=2m,
∴OD=m,
∴BD=OD-OB=1.5-0.7=0.8(m).
答:梯子底端B向外移了0.8米.
本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
16、(1),;(2),.
【解析】
(1)先移项,然后根据两边同时开方进行计算;(2)用十字相乘直接计算即可;
【详解】
解:(1),
,
即或,
,;
(2),
或,
,.
本题主要考查一元二次方程的求解,熟练掌握十字相乘和直接开方法是解决本题的关键.
17、
【解析】
先根据平方差和完全平方公式化简,再进行加减运算即可.
【详解】
解:原式=
=
=
本题是对二次根式混合运算的考查,熟练掌握平方差和完全平方公式是解决本题的关键.
18、详见解析.
【解析】
利用全等三角形的性质证明AB=CD即可解决问题.
【详解】
证明:∵AB∥CD,
∴∠ABO=∠CDO,
O是BD的中点,∠AOB=∠COD,
OB=OD,
∴△AOB≌△COD(ASA),
∴AB=CD.
又∵AB∥CD,
∴四边形ABCD是平行四边形.
本题考查平行四边形的判定,解题的关键是灵活运用所学知识解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据平行四边形的对边平行,可得AD∥BC,利用两直线平行,同旁内角互补,可得∠G+∠GBC=180°,从而求出∠G=∠FBC=90°,根据“SAS”可证△AGB≌△FBC,利用全等三角形的性质,可得AG=BF=1,BC=BG,然后利用勾股定理求出FG=3,从而求出BC=BG=AD=4,即得GD=5,再利用勾股定理即可得出BD的长.
【详解】
延长BF、DA交于点点G,如图所示
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠G+∠GBC=180°
又∵BF⊥BC,
∴∠FBC=90°
在△AGB和△FBC中,
∴△AGB≌△FBC
∴AG=BF=1,BC=BG
∵
∴BC=BG=AD=3+1=4
∴GD=4+1=5
∴
此题主要考查平行四边形的性质、勾股定理以及全等三角形的判定与性质,熟练掌握,即可解题.
20、,
【解析】
此题根据题意可以确定max(2,2x-1),然后即可得到一个一元二次方程,解此方程即可求出方程的解.
【详解】
①当2x-1>2时,∵max(2,2x-1)=2,
∴xmax(2,2x-1)=2x,
∴2x=x+1
解得,x=1,此时2x-1>2不成立;
②当2x-1<2时,∵max(2,2x-1)=2x-1,
∴xmax(2,2x-1)=2x2-x,
∴2x2-x =x+1
解得,,.
故答案为:,.
本题立意新颖,借助新运算,实际考查解一元二次方程的解法.
21、1.
【解析】
延长CM交AB于G,延长CN交AB于H,证明△BMC≌△BMG,得到BG=BC=8,CM=MG,同理得到AH=AC=6,CN=NH,根据三角形中位线定理计算即可得出答案.
【详解】
如图所示,延长CM交AB于G,延长CN交AB于H,
∵∠ACB=90°,AC=6,BC=8,
∴由勾股定理得AB=10,
在△BMC和△BMG中,
,
∴△BMC≌△BMG,
∴BG=BC=8,CM=MG,
∴AG=1,
同理,AH=AC=6,CN=NH,
∴GH=4,
∵CM=MG,CN=NH,
∴MN=GH=1.
故答案为:1.
本题考查了等腰三角形的判定和性质、三角形的中位线.利用全等证出三角形BCE与三角形ACH是等腰三角形是解题的关键.
22、45°
【解析】
∵四边形ABCD是平行四边形,
∴∠A=∠C, ∠A+∠B=180º.
∵∠A+∠C=270°,
∴∠A=∠C=135º,
∴∠B=180º-135º=45º.
故答案为45º.
23、
【解析】
由菱形性质可得AO,BD的长,根据.可求,则可求阴影部分面积.
【详解】
连接,交于点,,
四边形是菱形,
,,,,且
,
将菱形以点为中心按顺时针方向分别旋转,,后形成的图形
,
故答案为:
本题考查了:图形旋转的性质、菱形的性质、直角三角形的性质,掌握菱形性质是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)1;(2)①m=2− 或m=2+或m=2− ;②最大值为 ,最小值为−.
【解析】
(1)写出y=ax-3的相关函数,代入计算;
(2)①写出二次函数y=−x+4x−的相关函数,代入计算;
②根据二次根式的最大值和最小值的求法解答.
【详解】
(1)y=ax−3的相关函数y= ,
将A(−5,8)代入y=−ax+3得:5a+3=8,
解得a=1;
(2)二次函数y=−x+4x−的相关函数为y= ,
①当m<0时,将B(m, )代入y=x-4x+
得m-4m+,
解得:m=2+ (舍去),或m=2−,
当m⩾0时,将B(m, )代入y=−x+4x−得:
−m +4m− ,
解得:m=2+或m=2−.
综上所述:m=2− 或m=2+或m=2− ;
②当−3⩽x<0时, y=−x+4x−,抛物线的对称轴为x=2,
此时y随x的增大而减小,
∴此时y的最大值为,
当0⩽x⩽3时,函数y=−x+4x−,抛物线的对称轴为x=2,
当x=0有最小值,最小值为−,当x=2时,有最大值,最大值y= ,
综上所述,当−3⩽x⩽3时,函数y=−x+4x−的相关函数的最大值为 ,最小值为−.
此题考查二次函数图象上点的坐标特征,一次函数图象上点的坐标特征,解题关键在于将已知点代入解析式.
25、 (1)证明见解析;
(2)菱形的面积为4×2=8.
【解析】
(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;(2)因为∠EBC为60°,所以菱形的边长也为4,求出菱形的高面积就可求.
【详解】
(1)证明:∵D、E分别是AB、AC的中点,
∴DE∥BC且2DE=BC,
又∵BE=2DE,EF=BE,
∴EF=BC,EF∥BC,
∴四边形BCFE是平行四边形,
又∵BE=FE,
∴四边形BCFE是菱形;
(2)∵∠EBC=60°,
∴△EBC是等边三角形,
∴菱形的边长为4,高为2,
∴菱形的面积为4×2=8.
本题考查三角形中位线定理和菱形的判定与性质,解题的关键是掌握三角形中位线定理和菱形的判定与性质.
26、(1) y =﹣200x+1
(2)2
(3)2
【解析】
(1)根据每个工人每天生产的产品个数以及每个产品的利润,表示出总利润即可.
(2)根据每天获取利润为14400元,则y=14400,求出即可.
(3)根据每天获取利润不低于15200元即y≥15200,求出即可.
【详解】
解:(1)根据题意得:y=12x×100+10(10﹣x)×180=﹣200x+1.
(2)当y=14400时,有14400=﹣200x+1,解得:x=2.
∴要派2名工人去生产甲种产品.
(3)根据题意可得,y≥15200,即﹣200x+1≥15200,解得:x≤4,
∴10﹣x≥2,
∴至少要派2名工人去生产乙种产品才合适.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份广东省广东实验中学2025届数学九上开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省佛山市南海区石门实验中学2024-2025学年九上数学开学监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广东省揭阳产业园实验中学九上数学开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。