|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年浙江省湖州市长兴县数学九上开学监测模拟试题【含答案】
    立即下载
    加入资料篮
    2024年浙江省湖州市长兴县数学九上开学监测模拟试题【含答案】01
    2024年浙江省湖州市长兴县数学九上开学监测模拟试题【含答案】02
    2024年浙江省湖州市长兴县数学九上开学监测模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年浙江省湖州市长兴县数学九上开学监测模拟试题【含答案】

    展开
    这是一份2024年浙江省湖州市长兴县数学九上开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )
    A.60海里B.45海里C.20海里D.30海里
    2、(4分)如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接CD.若AB=4cm.则△BCD的面积为( )
    A.4B.2C.3D.2
    3、(4分)匀速地向如图所示容器内注水,最后将容器注满.在注水过程中,水面高度h随时间t变化情况的大致函数图象(图中OABC为一折线)是( )
    A.(1)B.(2)C.(3)D.无法确定
    4、(4分)小明统计了他家今年5月份打电话的次数及通话时间,并列出了如下的频数分布表:
    则通话时间不超过15 min的频率为( )
    A.0.1B.0.4C.0.5D.0.9
    5、(4分)已知关于x的不等式组无解,则a的取值范围是( )
    A.a<3B.a≤3C.a>3D.a≥3
    6、(4分) “”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害,2.5微米即0.0000025米.将0.0000025用科学记数法表示为( )
    A.B.C.D.
    7、(4分)某班名学生的身高情况如下表:
    则这名学生身高的众数和中位数分别是( )
    A.B.C.D.
    8、(4分) “垃圾分类,从我做起”,以下四幅图案分别代表四类可回收垃圾,其中是中心对称图形的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)_______.
    10、(4分)一次函数y=-x+4的图像是由正比例函数 ____________ 的图像向 ___ (填“上”或 “下”)平移 __ 个单位长度得到的一条直线.
    11、(4分)计算的结果是_____。
    12、(4分)在实数范围内分解因式:5-x2=_____.
    13、(4分)将一次函数y=5x﹣1的图象向上平移3个单位,所得直线不经过第_____象限.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在数学兴趣小组活动中,小明进行数学探究活动.将大小不相同的正方形ABCD与正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.
    (1)小明发现DG=BE且DG⊥BE,请你给出证明;
    (2)如图2,小明将正方形ABCD绕点A转动,当点B恰好落在线段DG上时
    ①猜想线段DG和BE的位置关系是 .
    ②若AD=2,AE=,求△ADG的面积.
    15、(8分)解下列方程
    (1)3x2-9x=0
    (2)4x2-3x-1=0
    16、(8分)如图,在Rt△ABC中,∠C=90°,∠B=54°,AD是△ABC的角平分线.求作AB的垂直平分线MN交AD于点E,连接BE;并证明DE=DB.(要求:尺规作图,保留作图痕迹,不写作法)
    17、(10分)我市从 2018 年 1 月 1 日开始,禁止燃油助力车上路,于是电动自 行车的市场需求量日渐增多.某商店计划最多投入 8 万元购进 A、B 两种型号的 电动自行车共 30 辆,其中每辆 B 型电动自行车比每辆 A 型电动自行车多 500 元.用 5 万元购进的 A 型电动自行车与用 6 万元购进的 B 型电动自行车数量一 样.
    (1)求 A、B 两种型号电动自行车的进货单价;
    (2)若 A 型电动自行车每辆售价为 2800 元,B 型电动自行车每辆售价为 3500 元,设该商店计划购进 A 型电动自行车 m 辆,两种型号的电动自行车全部销售 后可获利润 y 元.写出 y 与 m 之间的函数关系式;
    (3)该商店如何进货才能获得最大利润;此时最大利润是多少元.
    18、(10分)在平行四边形ABCD中,连接BD,过点B作BE⊥BD于点B交DA的延长线于点E,过点B作BG⊥CD于点G.
    (1)如图1,若∠C=60°,∠BDC=75°,BD=6,求AE的长度;
    (2)如图2,点F为AB边上一点,连接EF,过点F作FH⊥FE于点F交GB的延长线于点H,在△ABE的异侧,以BE为斜边作Rt△BEQ,其中∠Q=90°,若∠QEB=∠BDC,EF=FH,求证:BF+BH=BQ.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为__________米.
    20、(4分)若不等式组的解集是,则m的值是________.
    21、(4分)用科学记数法表示:__________________.
    22、(4分)某班的中考英语口语考试成绩如表:
    则该班中考英语口语考试成绩的众数比中位数多_____分.
    23、(4分)如图,在正方形ABCD的外侧作等边△DEC,则∠AEB=_________度.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)(1)计算(结果保留根号);
    (2)分析(1)的结果在哪两个整数之间?
    25、(10分)在四边形ABCD的边AB上任取一点E(点E不与A,B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形.如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.
    解决问题:
    (1)如图1,∠A=∠B=∠DEC=70°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
    (2)四边形AOBC在平面直角坐标系中的位置如图2所示,若点A,B,C的坐标分别为(6,8)、(25,0)、(19,8),则在四边形AOBC的边OB上是否存在强相似点?若存在,请求出其坐标;若不存在,请说明理由;
    (3)如图3,将矩形ABCD沿CE折叠,使点D落在AB边上的点F处,若点F恰好是四边形ABCE的边AB上的一个强相似点,直接写出的值.
    26、(12分)先化简,再求值: ,其中.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.
    【详解】
    解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,
    故AB=2AP=60(海里),
    则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)
    故选:D.
    此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.
    2、C
    【解析】
    过D点作BE的垂线,垂足为F,由∠ABC=30°及旋转角∠ABE=150°可知∠CBE为平角.在Rt△ABC中,AB=4,∠ABC=30°,则AC=2,BC=2,由旋转的性质可知BD=BC=2,DE=AC=2,BE=AB=4,由面积法:DF×BE=BD×DE求DF,则S△BCD=×BC×DF.
    【详解】
    过D点作BE的垂线,垂足为F,
    ∵∠ABC=30°,∠ABE=150°,
    ∴∠CBE=∠ABC+∠ABE=180°.
    在Rt△ABC中,∵AB=4,∠ABC=30°,∴AC=2,BC=2,
    由旋转的性质可知:BD=BC=2,DE=AC=2,BE=AB=4,
    由DF×BE=BD×DE,即DF×4=2×2,
    解得:DF=,
    S△BCD=×BC×DF=×2×=3(cm2).
    故选C.
    本题考查了旋转的性质,解直角三角形的方法,解答本题的关键是围绕求△BCD的面积确定底和高的值,有一定难度.
    3、A
    【解析】
    根据题意和图形可以判断哪个函数图象符合实际,从而可以解答本题.
    【详解】
    解:由图形可得,
    从开始到下面的圆柱注满这个过程中,h随时间t的变化比较快,
    从最下面的圆柱注满到中间圆柱注满这个过程中,h随时间t的变化比较缓慢,
    从中间圆柱注满到最上面的圆柱注满这个过程中,h随时间t的变化最快,
    故(1)中函数图象符合题意,
    故选:A.
    本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
    4、D
    【解析】
    用不超过15分钟的通话时间除以所有的通话时间即可求得通话时间不超过15分钟的频率.
    【详解】
    解:∵不超过15分钟的通话次数为20+16+9=45次,通话总次数为20+16+9+5=50次,
    ∴通话时间不超过15min的频率为=0.9,
    故选D.
    本题考查了频数分布表的知识,解题的关键是了解频率=频数÷样本容量,难度不大.
    5、B
    【解析】
    首先解不等式,然后根据不等式组无解确定a的范围.
    【详解】

    解不等式①得x≥2.
    解不等式②得x<a﹣2.
    ∵不等式组无解,
    ∴a﹣2≤2.
    ∴a≤3
    故选:B.
    本题考查解一元一次不等式组,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了,据此即可逆推出a的取值范围.
    6、D
    【解析】
    根据科学计数法的表示方法即可求解.
    【详解】
    0.0000025=
    故选D.
    此题主要考查科学计数法的表示,解题的关键是熟知科学计数法的表示方法.
    7、D
    【解析】
    根据众数和中位数的定义求解即可.一组数据中,出现次数最多的数就叫这组数据的众数.把一组数据按从小到大的顺序排列,中间的一个数字(或两个数字的平均数)叫做这组数据的中位数.
    【详解】
    解:由图可得出这组数据中1.72m出现的次数最多,因此,这名学生身高的众数是1.72m;
    把这一组数据按从小到大的顺序排列,中间的两个数字是1.72m、1.72m,因此,这名学生身高的中位数是1.72m.
    故选:D.
    本题考查的知识点是众数以及中位数,掌握众数以及中位数的定义是解此题的关键.
    8、C
    【解析】
    根据中心对称图形的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称,逐一判定即可.
    【详解】
    A选项,是轴对称图形,不符合题意;
    B选项,是轴对称图形,不符合题意;
    C选项,是中心对称图形,符合题意;
    D选项,是轴对称图形,不符合题意;
    故选:C.
    此题主要考查对中心对称图形的理解,熟练掌握,即可解题.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    用配方法解题即可.
    【详解】
    故答案为:1.
    本题主要考查配方法,掌握规律是解题关键.
    10、y=-x, 上, 4
    【解析】
    分析:根据函数图象平移的规则“上加下减”,即可得出将y=-x的函数图象向上平移4个单位即可得到函数y=-x+4的图象,此题得解.
    详解:根据图形平移的规则“上加下减”,即可得出:
    将y=−x的函数图象向上平移4个单位即可得到函数y=−x+4的图象.
    故答案为:y=−x;上;4.
    点睛:本题主要考查了一次函数图像与几何变换.关键在于牢记函数图像的平移规则.
    11、
    【解析】
    根据运算顺序,先对括号里进行通分,给a的分子分母都乘以a,然后利用分式的减法法则,分母不变,只把分子相减,进而除法法则,除以一个数等于乘以这个数的倒数,并把a2-1分解因式,约分即可得到化简结果.
    【详解】
    解:
    故答案为:
    此题考查学生灵活运用通分、约分的方法进行分式的加减及乘除运算,是一道基础题.注意运算的结果必须是最简分式.
    12、( +x)( -x)
    【解析】
    理解实数范围内是要运算到无理数为止,即可解题.
    【详解】
    解:5-x2=( +x)( -x)
    本题考查了因式分解,属于简单题,注意要求是实数范围内因式分解是解题关键.
    13、四
    【解析】
    根据一次函数图象的平移规律,可得答案.
    【详解】
    将一次函数y=5x﹣1的图象向上平移3个单位,得
    y=5x+2,
    直线y=5x+2经过一、二、三象限,不经过第四象限,
    故答案为:四。
    此题考查一次函数图象与几何变换,解题关键在于利用一次函数图象平移的性质
    三、解答题(本大题共5个小题,共48分)
    14、(1)详见解析;(2)①DG⊥BE;②1.
    【解析】
    (1)利用正方形得到条件,判断出△ADG≌△ABE,根据全等三角形的性质即可得到结论;
    (2)①同理证明△ADG≌△ABE,根据全等三角形的性质即可得到结论;
    ②分别计算DM、MG和AM的长,根据三角形面积可得结论.
    【详解】
    证明:(1)如图1,延长EB交DG于点H,
    ∵四边形ABCD与四边形AEFG是正方形,
    ∴AD=AB,∠DAG=∠BAE=90°,AG=AE
    在△ADG与△ABE中,

    ∴△ADG≌△ABE(SAS),
    ∴∠AGD=∠AEB,DG=BE,
    ∵△ADG中,∠AGD+∠ADG=90°,
    ∴∠AEB+∠ADG=90°,
    ∵△DEH中,∠AEB+∠ADG+∠DHE=180°,
    ∴∠DHE=90°,
    ∴DG⊥BE;
    (2)①DG⊥BE,
    理由是:如图2,∵四边形ABCD和四边形AEFG都为正方形,
    ∴AD=AB,∠DAB=∠GAE=90°,AG=AE,
    ∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,
    在△ADG和△ABE中,

    ∴△ADG≌△ABE(SAS),
    ∴∠ABE=∠ADG
    ∴∠DBE=∠ABE+∠ABD=∠ABD+∠ADG=90°,
    ∴DG⊥BE;
    故答案为DG⊥BE;
    ②如图2,过点A作AM⊥DG交DG于点M,
    ∠AMD=∠AMG=90°,
    ∵BD是正方形ABCD的对角线,
    ∴∠MDA=41°
    在Rt△AMD中,
    ∵∠MDA=41°,AD=2,
    ∴AM=DM=2,
    在Rt△AMG中,
    ∵AM2+GM2=AG2
    ∴GM==3,
    ∵DG=DM+GM=2+3=1,
    ∴S△ADG=DG•AM=×1×2=1.
    此题是四边形的综合题,考查了旋转的性质和正方形的性质,用到的知识点是旋转的性质、全等三角形的判定,勾股定理和正方形的性质,难度适中,关键是根据题意画出辅助线,构造直角三角形.
    15、(1)x1=0,x2=3;(2)x1=1,x2=-.
    【解析】
    (1)直接利用提取公因式法分解因式进而解方程得出答案;
    (2)直接利用十字相乘法分解因式解方程得出答案.
    【详解】
    (1)3x2-9x=0,
    3x(x-3)=0,
    解得:x1=0,x2=3;
    (2)4x2-3x-1=0,
    (4x+1)(x-1)=0,
    解得:x1=1,x2=-.
    本题考查了利用因式分解法解一元二次方程,正确掌握因式分解的方法是解题的关键.
    16、见解析.
    【解析】
    如图,利用基本作图作MN垂直平分AB得到点E,先计算出∠BAC=36°,再利用AD是△ABC的角平分线得到∠DAB=18°,再利用线段垂直平分线的性质和等腰三角形的性质得到∠EBA=∠EAB=18°,接着利用三角形外角性质得到∠DEB=36,然后计算出∠DBE=36°得到∠DEB=∠DBE,从而得到DE=DB
    【详解】
    如图,点E为所作;
    ∵∠C=90°,∠B=54°,
    ∴∠BAC=36°,
    ∵AD是△ABC的角平分线,
    ∴∠DAB= ×36°=18°,
    ∵MN垂直平分AB,
    ∴EA=EB,
    ∴∠EBA=∠EAB=18°,
    ∴∠DEB=∠EAB+∠EBA=36°,
    ∵∠DBE=54°﹣18°=36°,
    ∴∠DEB=∠DBE,
    ∴DE=DB.
    此题考查线段垂直平分线的性质和作图一基本作图,解题关键在于利用垂直平分线的性质解答
    17、(1)A、B 两种型号电动自行车的进货单价分别为 2500 元 3000 元;(2)y=﹣200m+15000(20≤m≤30);(3)m=20 时,y 有最大值,最大值为 11000 元.
    【解析】
    (1)设 A、B 两种型号电动自行车的进货单价分别为 x 元、(x+500)元,根据用 5 万元购进的 A 型电动自行车与用 6 万元购进的 B 型电动自行车数量一 样,列分式方程即可解决问题;
    (2)根据总利润=A 型的利润+B 型的利润,列出函数关系式即可;
    (3)利用一次函数的性质即可解决问题.
    【详解】
    解:(1)设 A、B 两种型号电动自行车的进货单价分别为 x 元、(x+500) 元,
    由题意:=,
    解得:x=2500,
    经检验:x=2500 是分式方程的解,
    答:A、B 两种型号电动自行车的进货单价分别为 2500 元 3000 元;
    (2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30);
    (3)∵y=300m+500(30﹣m)=﹣200m+15000,
    ∵﹣200<0,20≤m≤30,
    ∴m=20 时,y 有最大值,最大值为 11000 元.
    本题考查了分式方程的应用,一次函数的应用等知识,读懂题意,找准等量关系列出方程,找准数量关系列出函数关系是解题的关键.
    18、(1)6﹣2;(2)详见解析.
    【解析】
    (1)根据平行四边形性质可证:△BDE是等腰直角三角形,运用勾股定理可求DE和AD,AE即可求得;
    (2)过点E作ET⊥AB交BA的延长线于T,构造直角三角形,由平行四边形性质及直角三角形性质可证:△BEQ≌△BET(AAS),△BFH≌△TEF(AAS),进而可证得结论.
    【详解】
    解:(1)如图1,过点D作DR⊥BC于R,
    ∵ABCD是平行四边形
    ∴AB∥CD,AD∥BC,AD=BC
    ∵∠C=60°,∠BDC=75°,
    ∴∠CBD=180°﹣(∠C+∠BDC)=45°
    ∴∠ADB=∠CBD=45°
    ∵BE⊥BD
    ∴∠DBE=90°
    ∴∠E=∠BDE=45°
    ∴DE=BD=12
    ∵DR⊥BC
    ∴∠BRD=∠CRD=90°
    ∴∠BDR=∠CBD=45°,
    ∴DR=BR
    由勾股定理可得即
    ∴DR=BR=6
    ∵∠C=60°
    ∴∠CDR=90°﹣60°=30°
    ∴CR=2,CD=4
    ∴AD=BC=DR+CR=6+2,
    ∴AE=DE﹣AD=12﹣(6+2)=6﹣2;
    (2)如图2,过点E作ET⊥AB交BA的延长线于T,则∠T=90°
    ∵ABCD是平行四边形
    ∴AB∥CD,
    ∴∠ABD=∠BDC
    ∵∠QEB=∠BDC
    ∴∠QEB=∠ABD
    ∵BG⊥CD,BE⊥BD,FH⊥FE
    ∴∠BGC=∠ABG=∠DBE=∠EFH=∠Q=90°
    ∴∠EBT+∠BET=∠EBT+∠ABD=∠EFT+∠BFH=∠EFT+∠FET=90°,
    ∴∠BET=∠ABD=∠QEB,∠BFH=∠FET
    ∵BE=BE,EF=FH
    ∴△BEQ≌△BET(AAS),△BFH≌△TEF(AAS)
    ∴BQ=BT,BH=FT
    ∵BF+FT=BT
    ∴BF+BH=BQ.
    本题考查了平行四边形的性质、勾股定理以及全等三角形的性质与判定,解题的关键是灵活运用平行四边形及直角三角形的性质.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1.
    【解析】
    如图,由于倒下部分与地面成30°夹角,所以∠BAC=30°,由此得到AB=2CB,而离地面米处折断倒下,即BC=4米,所以得到AB=8米,然后即可求出这棵大树在折断前的高度.
    【详解】
    如图,
    ∵∠BAC=30°,∠BCA=90°,
    ∴AB=2CB,
    而BC=4米,
    ∴AB=8米,
    ∴这棵大树在折断前的高度为AB+BC=1米.
    故答案为1.
    本题考查了含30度角的直角三角形的边长的性质,牢牢掌握该性质是解答本题的关键.
    20、2
    【解析】
    分别求出每个不等式的解集,取共同部分,即可得到m的值.
    【详解】
    解:,解得:,
    ∵不等式组的解集为:,
    ∴;
    故答案为:2.
    本题考查了由不等式组的解集求参数,解题的关键是根据不等式组的解集求参数.
    21、
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10 ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    故答案为.
    此题考查科学记数法,解题关键在于掌握一般形式.
    22、3
    【解析】
    这组数出现次数最多的是3;∴这组数的众数是3.
    ∵共42人,∴中位数应是第23和第22人的平均数,位于最中间的数是2,2,
    ∴这组数的中位数是2.
    ∴该班中考英语口语考试成绩的众数比中位数多3﹣2=3分,
    故答案为3.
    【点睛】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
    23、1
    【解析】
    根据正方形和等边三角形的性质证明△ADE是等腰三角形,由此可以求出∠DEA,同理求出∠CEB即可解决问题.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴∠ADC=90°,CD=AD,
    ∵△DCE是正三角形,
    ∴DE=DC=AD,∠CDE=∠DEC=60°,
    ∴△ADE是等腰三角形,∠ADE=90°+60°=150°,
    ∴∠DAE=∠DEA==15°,
    同理可得:∠CBE=∠CEB=15°,
    ∴∠AEB=∠DEC―∠DEA―∠CEB=60°-15°-15°=1°,
    故答案为:1.
    此题主要考查了正方形和等边三角形的性质、等腰三角形的判定和性质以及三角形的内角和定理,灵活运用相关性质定理是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)
    【解析】
    (1)先去括号,再将二次根式化简为最简二次根式,并合并;
    (2)确认=27,再确认25<27<36,可得结论.
    【详解】
    解:原式

    ∴在和6之间.
    本题考查了二次根式的加减混合运算和无理数的估算,熟练掌握二次根式的运算法则是关键.
    25、 (1)是(2)存在(3)
    【解析】
    (1)要证明点E是四边形ABCD的AB边上的相似点,只要证明有一组三角形相似就行,很容易证明△ADE∽△BEC,所以问题得解.
    (2)当点E是AB中点时,点E是四边形ABCD的边AB上的强相似点.只要证明△DEC∽△EBC即可.
    (3)由点E是矩形ABCD的AB边上的一个强相似点,得△AEM∽△BCE∽△ECM,根据相似三角形的对应角相等,可求得,利用含30°角的直角三角形性质可得BE与AB,BC边之间的数量关系,从而可求出AB与BC边之间的数量关系.
    【详解】
    (1)如图1中,结论:点E是四边形ABCD的边AB上的相似点.理由如下:
    ∵∠DEB=∠A+∠ADE=∠DEC+∠CEB,
    又∵∠A=∠B=∠DEC,
    ∴∠ADE=∠CEB,
    ∵∠A=∠B,
    ∴△DAE∽△EBC.
    ∴E是四边形ABCD的边AB上的相似点.
    (2)当点E是AB中点时,点E是四边形ABCD的边AB上的强相似点.
    理由:∵△DAE∽△EBC,


    ∵AE=EB,

    ∵∠DEC=∠B,
    ∴△DEC∽△EBC,
    ∴点E是四边形ABCD的边AB上的强相似点.
    (3)如图2中,结论:.理由如下:
    ∵点E是四边形ABCM的边AB上的一个强相似点,
    ∴△AEM∽△BCE∽△ECM,
    ∴∠BCE=∠ECM=∠AEM.
    由折叠可知:△ECM≌△DCM,
    ∴∠ECM=∠DCM,CE=CD,


    在Rt△BCE中,

    属于相似形综合题,考查相似三角形的判定与性质,解直角三角形,全等三角形的判定与性质,综合性比较强,难度较大.
    26、
    【解析】
    根据分式的运算法则即可进行化简求值.
    【详解】
    原式===
    当x=时,原式= =
    此题主要考查分式的运算,解题的关键是熟知分式的运算法则.
    题号





    总分
    得分
    通话时间
    x/min
    051015频数
    (通话次数)
    20
    16
    9
    5
    身高
    人数
    考试成绩/分
    30
    29
    28
    27
    26
    学生数/人
    3
    15
    13
    6
    3
    相关试卷

    2024年浙江省湖州市实验学校数学九上开学达标检测试题【含答案】: 这是一份2024年浙江省湖州市实验学校数学九上开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年浙江省湖州市南浔区数学九上开学学业水平测试试题【含答案】: 这是一份2024年浙江省湖州市南浔区数学九上开学学业水平测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年浙江省湖州市吴兴区数学九年级第一学期开学监测模拟试题【含答案】: 这是一份2024-2025学年浙江省湖州市吴兴区数学九年级第一学期开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map