2024年浙江省湖州市长兴县数学九上开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )
A.60海里B.45海里C.20海里D.30海里
2、(4分)如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接CD.若AB=4cm.则△BCD的面积为( )
A.4B.2C.3D.2
3、(4分)匀速地向如图所示容器内注水,最后将容器注满.在注水过程中,水面高度h随时间t变化情况的大致函数图象(图中OABC为一折线)是( )
A.(1)B.(2)C.(3)D.无法确定
4、(4分)小明统计了他家今年5月份打电话的次数及通话时间,并列出了如下的频数分布表:
则通话时间不超过15 min的频率为( )
A.0.1B.0.4C.0.5D.0.9
5、(4分)已知关于x的不等式组无解,则a的取值范围是( )
A.a<3B.a≤3C.a>3D.a≥3
6、(4分) “”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害,2.5微米即0.0000025米.将0.0000025用科学记数法表示为( )
A.B.C.D.
7、(4分)某班名学生的身高情况如下表:
则这名学生身高的众数和中位数分别是( )
A.B.C.D.
8、(4分) “垃圾分类,从我做起”,以下四幅图案分别代表四类可回收垃圾,其中是中心对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)_______.
10、(4分)一次函数y=-x+4的图像是由正比例函数 ____________ 的图像向 ___ (填“上”或 “下”)平移 __ 个单位长度得到的一条直线.
11、(4分)计算的结果是_____。
12、(4分)在实数范围内分解因式:5-x2=_____.
13、(4分)将一次函数y=5x﹣1的图象向上平移3个单位,所得直线不经过第_____象限.
三、解答题(本大题共5个小题,共48分)
14、(12分)在数学兴趣小组活动中,小明进行数学探究活动.将大小不相同的正方形ABCD与正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.
(1)小明发现DG=BE且DG⊥BE,请你给出证明;
(2)如图2,小明将正方形ABCD绕点A转动,当点B恰好落在线段DG上时
①猜想线段DG和BE的位置关系是 .
②若AD=2,AE=,求△ADG的面积.
15、(8分)解下列方程
(1)3x2-9x=0
(2)4x2-3x-1=0
16、(8分)如图,在Rt△ABC中,∠C=90°,∠B=54°,AD是△ABC的角平分线.求作AB的垂直平分线MN交AD于点E,连接BE;并证明DE=DB.(要求:尺规作图,保留作图痕迹,不写作法)
17、(10分)我市从 2018 年 1 月 1 日开始,禁止燃油助力车上路,于是电动自 行车的市场需求量日渐增多.某商店计划最多投入 8 万元购进 A、B 两种型号的 电动自行车共 30 辆,其中每辆 B 型电动自行车比每辆 A 型电动自行车多 500 元.用 5 万元购进的 A 型电动自行车与用 6 万元购进的 B 型电动自行车数量一 样.
(1)求 A、B 两种型号电动自行车的进货单价;
(2)若 A 型电动自行车每辆售价为 2800 元,B 型电动自行车每辆售价为 3500 元,设该商店计划购进 A 型电动自行车 m 辆,两种型号的电动自行车全部销售 后可获利润 y 元.写出 y 与 m 之间的函数关系式;
(3)该商店如何进货才能获得最大利润;此时最大利润是多少元.
18、(10分)在平行四边形ABCD中,连接BD,过点B作BE⊥BD于点B交DA的延长线于点E,过点B作BG⊥CD于点G.
(1)如图1,若∠C=60°,∠BDC=75°,BD=6,求AE的长度;
(2)如图2,点F为AB边上一点,连接EF,过点F作FH⊥FE于点F交GB的延长线于点H,在△ABE的异侧,以BE为斜边作Rt△BEQ,其中∠Q=90°,若∠QEB=∠BDC,EF=FH,求证:BF+BH=BQ.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为__________米.
20、(4分)若不等式组的解集是,则m的值是________.
21、(4分)用科学记数法表示:__________________.
22、(4分)某班的中考英语口语考试成绩如表:
则该班中考英语口语考试成绩的众数比中位数多_____分.
23、(4分)如图,在正方形ABCD的外侧作等边△DEC,则∠AEB=_________度.
二、解答题(本大题共3个小题,共30分)
24、(8分)(1)计算(结果保留根号);
(2)分析(1)的结果在哪两个整数之间?
25、(10分)在四边形ABCD的边AB上任取一点E(点E不与A,B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形.如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.
解决问题:
(1)如图1,∠A=∠B=∠DEC=70°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)四边形AOBC在平面直角坐标系中的位置如图2所示,若点A,B,C的坐标分别为(6,8)、(25,0)、(19,8),则在四边形AOBC的边OB上是否存在强相似点?若存在,请求出其坐标;若不存在,请说明理由;
(3)如图3,将矩形ABCD沿CE折叠,使点D落在AB边上的点F处,若点F恰好是四边形ABCE的边AB上的一个强相似点,直接写出的值.
26、(12分)先化简,再求值: ,其中.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.
【详解】
解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,
故AB=2AP=60(海里),
则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)
故选:D.
此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.
2、C
【解析】
过D点作BE的垂线,垂足为F,由∠ABC=30°及旋转角∠ABE=150°可知∠CBE为平角.在Rt△ABC中,AB=4,∠ABC=30°,则AC=2,BC=2,由旋转的性质可知BD=BC=2,DE=AC=2,BE=AB=4,由面积法:DF×BE=BD×DE求DF,则S△BCD=×BC×DF.
【详解】
过D点作BE的垂线,垂足为F,
∵∠ABC=30°,∠ABE=150°,
∴∠CBE=∠ABC+∠ABE=180°.
在Rt△ABC中,∵AB=4,∠ABC=30°,∴AC=2,BC=2,
由旋转的性质可知:BD=BC=2,DE=AC=2,BE=AB=4,
由DF×BE=BD×DE,即DF×4=2×2,
解得:DF=,
S△BCD=×BC×DF=×2×=3(cm2).
故选C.
本题考查了旋转的性质,解直角三角形的方法,解答本题的关键是围绕求△BCD的面积确定底和高的值,有一定难度.
3、A
【解析】
根据题意和图形可以判断哪个函数图象符合实际,从而可以解答本题.
【详解】
解:由图形可得,
从开始到下面的圆柱注满这个过程中,h随时间t的变化比较快,
从最下面的圆柱注满到中间圆柱注满这个过程中,h随时间t的变化比较缓慢,
从中间圆柱注满到最上面的圆柱注满这个过程中,h随时间t的变化最快,
故(1)中函数图象符合题意,
故选:A.
本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
4、D
【解析】
用不超过15分钟的通话时间除以所有的通话时间即可求得通话时间不超过15分钟的频率.
【详解】
解:∵不超过15分钟的通话次数为20+16+9=45次,通话总次数为20+16+9+5=50次,
∴通话时间不超过15min的频率为=0.9,
故选D.
本题考查了频数分布表的知识,解题的关键是了解频率=频数÷样本容量,难度不大.
5、B
【解析】
首先解不等式,然后根据不等式组无解确定a的范围.
【详解】
,
解不等式①得x≥2.
解不等式②得x<a﹣2.
∵不等式组无解,
∴a﹣2≤2.
∴a≤3
故选:B.
本题考查解一元一次不等式组,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了,据此即可逆推出a的取值范围.
6、D
【解析】
根据科学计数法的表示方法即可求解.
【详解】
0.0000025=
故选D.
此题主要考查科学计数法的表示,解题的关键是熟知科学计数法的表示方法.
7、D
【解析】
根据众数和中位数的定义求解即可.一组数据中,出现次数最多的数就叫这组数据的众数.把一组数据按从小到大的顺序排列,中间的一个数字(或两个数字的平均数)叫做这组数据的中位数.
【详解】
解:由图可得出这组数据中1.72m出现的次数最多,因此,这名学生身高的众数是1.72m;
把这一组数据按从小到大的顺序排列,中间的两个数字是1.72m、1.72m,因此,这名学生身高的中位数是1.72m.
故选:D.
本题考查的知识点是众数以及中位数,掌握众数以及中位数的定义是解此题的关键.
8、C
【解析】
根据中心对称图形的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称,逐一判定即可.
【详解】
A选项,是轴对称图形,不符合题意;
B选项,是轴对称图形,不符合题意;
C选项,是中心对称图形,符合题意;
D选项,是轴对称图形,不符合题意;
故选:C.
此题主要考查对中心对称图形的理解,熟练掌握,即可解题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
用配方法解题即可.
【详解】
故答案为:1.
本题主要考查配方法,掌握规律是解题关键.
10、y=-x, 上, 4
【解析】
分析:根据函数图象平移的规则“上加下减”,即可得出将y=-x的函数图象向上平移4个单位即可得到函数y=-x+4的图象,此题得解.
详解:根据图形平移的规则“上加下减”,即可得出:
将y=−x的函数图象向上平移4个单位即可得到函数y=−x+4的图象.
故答案为:y=−x;上;4.
点睛:本题主要考查了一次函数图像与几何变换.关键在于牢记函数图像的平移规则.
11、
【解析】
根据运算顺序,先对括号里进行通分,给a的分子分母都乘以a,然后利用分式的减法法则,分母不变,只把分子相减,进而除法法则,除以一个数等于乘以这个数的倒数,并把a2-1分解因式,约分即可得到化简结果.
【详解】
解:
故答案为:
此题考查学生灵活运用通分、约分的方法进行分式的加减及乘除运算,是一道基础题.注意运算的结果必须是最简分式.
12、( +x)( -x)
【解析】
理解实数范围内是要运算到无理数为止,即可解题.
【详解】
解:5-x2=( +x)( -x)
本题考查了因式分解,属于简单题,注意要求是实数范围内因式分解是解题关键.
13、四
【解析】
根据一次函数图象的平移规律,可得答案.
【详解】
将一次函数y=5x﹣1的图象向上平移3个单位,得
y=5x+2,
直线y=5x+2经过一、二、三象限,不经过第四象限,
故答案为:四。
此题考查一次函数图象与几何变换,解题关键在于利用一次函数图象平移的性质
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)①DG⊥BE;②1.
【解析】
(1)利用正方形得到条件,判断出△ADG≌△ABE,根据全等三角形的性质即可得到结论;
(2)①同理证明△ADG≌△ABE,根据全等三角形的性质即可得到结论;
②分别计算DM、MG和AM的长,根据三角形面积可得结论.
【详解】
证明:(1)如图1,延长EB交DG于点H,
∵四边形ABCD与四边形AEFG是正方形,
∴AD=AB,∠DAG=∠BAE=90°,AG=AE
在△ADG与△ABE中,
,
∴△ADG≌△ABE(SAS),
∴∠AGD=∠AEB,DG=BE,
∵△ADG中,∠AGD+∠ADG=90°,
∴∠AEB+∠ADG=90°,
∵△DEH中,∠AEB+∠ADG+∠DHE=180°,
∴∠DHE=90°,
∴DG⊥BE;
(2)①DG⊥BE,
理由是:如图2,∵四边形ABCD和四边形AEFG都为正方形,
∴AD=AB,∠DAB=∠GAE=90°,AG=AE,
∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,
在△ADG和△ABE中,
,
∴△ADG≌△ABE(SAS),
∴∠ABE=∠ADG
∴∠DBE=∠ABE+∠ABD=∠ABD+∠ADG=90°,
∴DG⊥BE;
故答案为DG⊥BE;
②如图2,过点A作AM⊥DG交DG于点M,
∠AMD=∠AMG=90°,
∵BD是正方形ABCD的对角线,
∴∠MDA=41°
在Rt△AMD中,
∵∠MDA=41°,AD=2,
∴AM=DM=2,
在Rt△AMG中,
∵AM2+GM2=AG2
∴GM==3,
∵DG=DM+GM=2+3=1,
∴S△ADG=DG•AM=×1×2=1.
此题是四边形的综合题,考查了旋转的性质和正方形的性质,用到的知识点是旋转的性质、全等三角形的判定,勾股定理和正方形的性质,难度适中,关键是根据题意画出辅助线,构造直角三角形.
15、(1)x1=0,x2=3;(2)x1=1,x2=-.
【解析】
(1)直接利用提取公因式法分解因式进而解方程得出答案;
(2)直接利用十字相乘法分解因式解方程得出答案.
【详解】
(1)3x2-9x=0,
3x(x-3)=0,
解得:x1=0,x2=3;
(2)4x2-3x-1=0,
(4x+1)(x-1)=0,
解得:x1=1,x2=-.
本题考查了利用因式分解法解一元二次方程,正确掌握因式分解的方法是解题的关键.
16、见解析.
【解析】
如图,利用基本作图作MN垂直平分AB得到点E,先计算出∠BAC=36°,再利用AD是△ABC的角平分线得到∠DAB=18°,再利用线段垂直平分线的性质和等腰三角形的性质得到∠EBA=∠EAB=18°,接着利用三角形外角性质得到∠DEB=36,然后计算出∠DBE=36°得到∠DEB=∠DBE,从而得到DE=DB
【详解】
如图,点E为所作;
∵∠C=90°,∠B=54°,
∴∠BAC=36°,
∵AD是△ABC的角平分线,
∴∠DAB= ×36°=18°,
∵MN垂直平分AB,
∴EA=EB,
∴∠EBA=∠EAB=18°,
∴∠DEB=∠EAB+∠EBA=36°,
∵∠DBE=54°﹣18°=36°,
∴∠DEB=∠DBE,
∴DE=DB.
此题考查线段垂直平分线的性质和作图一基本作图,解题关键在于利用垂直平分线的性质解答
17、(1)A、B 两种型号电动自行车的进货单价分别为 2500 元 3000 元;(2)y=﹣200m+15000(20≤m≤30);(3)m=20 时,y 有最大值,最大值为 11000 元.
【解析】
(1)设 A、B 两种型号电动自行车的进货单价分别为 x 元、(x+500)元,根据用 5 万元购进的 A 型电动自行车与用 6 万元购进的 B 型电动自行车数量一 样,列分式方程即可解决问题;
(2)根据总利润=A 型的利润+B 型的利润,列出函数关系式即可;
(3)利用一次函数的性质即可解决问题.
【详解】
解:(1)设 A、B 两种型号电动自行车的进货单价分别为 x 元、(x+500) 元,
由题意:=,
解得:x=2500,
经检验:x=2500 是分式方程的解,
答:A、B 两种型号电动自行车的进货单价分别为 2500 元 3000 元;
(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30);
(3)∵y=300m+500(30﹣m)=﹣200m+15000,
∵﹣200<0,20≤m≤30,
∴m=20 时,y 有最大值,最大值为 11000 元.
本题考查了分式方程的应用,一次函数的应用等知识,读懂题意,找准等量关系列出方程,找准数量关系列出函数关系是解题的关键.
18、(1)6﹣2;(2)详见解析.
【解析】
(1)根据平行四边形性质可证:△BDE是等腰直角三角形,运用勾股定理可求DE和AD,AE即可求得;
(2)过点E作ET⊥AB交BA的延长线于T,构造直角三角形,由平行四边形性质及直角三角形性质可证:△BEQ≌△BET(AAS),△BFH≌△TEF(AAS),进而可证得结论.
【详解】
解:(1)如图1,过点D作DR⊥BC于R,
∵ABCD是平行四边形
∴AB∥CD,AD∥BC,AD=BC
∵∠C=60°,∠BDC=75°,
∴∠CBD=180°﹣(∠C+∠BDC)=45°
∴∠ADB=∠CBD=45°
∵BE⊥BD
∴∠DBE=90°
∴∠E=∠BDE=45°
∴DE=BD=12
∵DR⊥BC
∴∠BRD=∠CRD=90°
∴∠BDR=∠CBD=45°,
∴DR=BR
由勾股定理可得即
∴DR=BR=6
∵∠C=60°
∴∠CDR=90°﹣60°=30°
∴CR=2,CD=4
∴AD=BC=DR+CR=6+2,
∴AE=DE﹣AD=12﹣(6+2)=6﹣2;
(2)如图2,过点E作ET⊥AB交BA的延长线于T,则∠T=90°
∵ABCD是平行四边形
∴AB∥CD,
∴∠ABD=∠BDC
∵∠QEB=∠BDC
∴∠QEB=∠ABD
∵BG⊥CD,BE⊥BD,FH⊥FE
∴∠BGC=∠ABG=∠DBE=∠EFH=∠Q=90°
∴∠EBT+∠BET=∠EBT+∠ABD=∠EFT+∠BFH=∠EFT+∠FET=90°,
∴∠BET=∠ABD=∠QEB,∠BFH=∠FET
∵BE=BE,EF=FH
∴△BEQ≌△BET(AAS),△BFH≌△TEF(AAS)
∴BQ=BT,BH=FT
∵BF+FT=BT
∴BF+BH=BQ.
本题考查了平行四边形的性质、勾股定理以及全等三角形的性质与判定,解题的关键是灵活运用平行四边形及直角三角形的性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
如图,由于倒下部分与地面成30°夹角,所以∠BAC=30°,由此得到AB=2CB,而离地面米处折断倒下,即BC=4米,所以得到AB=8米,然后即可求出这棵大树在折断前的高度.
【详解】
如图,
∵∠BAC=30°,∠BCA=90°,
∴AB=2CB,
而BC=4米,
∴AB=8米,
∴这棵大树在折断前的高度为AB+BC=1米.
故答案为1.
本题考查了含30度角的直角三角形的边长的性质,牢牢掌握该性质是解答本题的关键.
20、2
【解析】
分别求出每个不等式的解集,取共同部分,即可得到m的值.
【详解】
解:,解得:,
∵不等式组的解集为:,
∴;
故答案为:2.
本题考查了由不等式组的解集求参数,解题的关键是根据不等式组的解集求参数.
21、
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10 ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
故答案为.
此题考查科学记数法,解题关键在于掌握一般形式.
22、3
【解析】
这组数出现次数最多的是3;∴这组数的众数是3.
∵共42人,∴中位数应是第23和第22人的平均数,位于最中间的数是2,2,
∴这组数的中位数是2.
∴该班中考英语口语考试成绩的众数比中位数多3﹣2=3分,
故答案为3.
【点睛】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
23、1
【解析】
根据正方形和等边三角形的性质证明△ADE是等腰三角形,由此可以求出∠DEA,同理求出∠CEB即可解决问题.
【详解】
解:∵四边形ABCD是正方形,
∴∠ADC=90°,CD=AD,
∵△DCE是正三角形,
∴DE=DC=AD,∠CDE=∠DEC=60°,
∴△ADE是等腰三角形,∠ADE=90°+60°=150°,
∴∠DAE=∠DEA==15°,
同理可得:∠CBE=∠CEB=15°,
∴∠AEB=∠DEC―∠DEA―∠CEB=60°-15°-15°=1°,
故答案为:1.
此题主要考查了正方形和等边三角形的性质、等腰三角形的判定和性质以及三角形的内角和定理,灵活运用相关性质定理是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)
【解析】
(1)先去括号,再将二次根式化简为最简二次根式,并合并;
(2)确认=27,再确认25<27<36,可得结论.
【详解】
解:原式
,
∴在和6之间.
本题考查了二次根式的加减混合运算和无理数的估算,熟练掌握二次根式的运算法则是关键.
25、 (1)是(2)存在(3)
【解析】
(1)要证明点E是四边形ABCD的AB边上的相似点,只要证明有一组三角形相似就行,很容易证明△ADE∽△BEC,所以问题得解.
(2)当点E是AB中点时,点E是四边形ABCD的边AB上的强相似点.只要证明△DEC∽△EBC即可.
(3)由点E是矩形ABCD的AB边上的一个强相似点,得△AEM∽△BCE∽△ECM,根据相似三角形的对应角相等,可求得,利用含30°角的直角三角形性质可得BE与AB,BC边之间的数量关系,从而可求出AB与BC边之间的数量关系.
【详解】
(1)如图1中,结论:点E是四边形ABCD的边AB上的相似点.理由如下:
∵∠DEB=∠A+∠ADE=∠DEC+∠CEB,
又∵∠A=∠B=∠DEC,
∴∠ADE=∠CEB,
∵∠A=∠B,
∴△DAE∽△EBC.
∴E是四边形ABCD的边AB上的相似点.
(2)当点E是AB中点时,点E是四边形ABCD的边AB上的强相似点.
理由:∵△DAE∽△EBC,
∴
∴
∵AE=EB,
∴
∵∠DEC=∠B,
∴△DEC∽△EBC,
∴点E是四边形ABCD的边AB上的强相似点.
(3)如图2中,结论:.理由如下:
∵点E是四边形ABCM的边AB上的一个强相似点,
∴△AEM∽△BCE∽△ECM,
∴∠BCE=∠ECM=∠AEM.
由折叠可知:△ECM≌△DCM,
∴∠ECM=∠DCM,CE=CD,
∴
在Rt△BCE中,
∴
属于相似形综合题,考查相似三角形的判定与性质,解直角三角形,全等三角形的判定与性质,综合性比较强,难度较大.
26、
【解析】
根据分式的运算法则即可进行化简求值.
【详解】
原式===
当x=时,原式= =
此题主要考查分式的运算,解题的关键是熟知分式的运算法则.
题号
一
二
三
四
五
总分
得分
通话时间
x/min
0
(通话次数)
20
16
9
5
身高
人数
考试成绩/分
30
29
28
27
26
学生数/人
3
15
13
6
3
2024年浙江省湖州市实验学校数学九上开学达标检测试题【含答案】: 这是一份2024年浙江省湖州市实验学校数学九上开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年浙江省湖州市南浔区数学九上开学学业水平测试试题【含答案】: 这是一份2024年浙江省湖州市南浔区数学九上开学学业水平测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年浙江省湖州市吴兴区数学九年级第一学期开学监测模拟试题【含答案】: 这是一份2024-2025学年浙江省湖州市吴兴区数学九年级第一学期开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。